
§1 PP3 (Version 1.3) INTRODUCTION 1

1. Introduction. (Please note that you can find a table of contents at the end of this document). This
program PP3 (“parvum planetarium”) takes the data of various celestial data files and turns them into a
LATEX file that uses PSTricks to draw a nice sky chart containing a certain region of the sky. Current versions
are available on its homepage.

You call PP3 with e. g.

pp3 mychart.pp3

The data files (stars.dat, nebulae.dat, boundaries.dat, labeldimens.dat, lines.dat, and milkyway

.dat) must be in the proper directory. The proper directory was compiled into PP3. With Linux, normally
it’s /usr/local/share/pp3/, with Windows the current directory simply. But the environment variable
PP3DATA can override that.

The resulting chart is by default sent to standard output which you may redirect into a file. But you can
define an output filename explicitly in the input script.

If you want to use other data with this program, you may well provide your own catalogue files. Their
file formats are very simple, and they are explained in this document together with the respective read . . . ()
function.

If you give a single dash “−” as the only parameter to PP3, the input script is read from standard input.
So if you write

pp3 − > test.tex && latex test && dvips test

and type ^D (Control-D)1, a file test.ps should be produced that contains a sample chart.
Very important is to know how to write an input script. Please consult the following section “The input

script” for this. Here is an example input script:

Chart of the Scorpion, printable on a

black and white printing device

set constellation SCO # This is highlighted

set center_rectascension 17

set center_declination -28

set grad_per_cm 2.5

switch milky_way on

switch eps_output on # Please call LaTeX and dvips for us

switch colored_stars off # All the same colour ...

color stars 0 0 0 # ... namely this one

color nebulae 0 0 0

color background 1 1 1

color grid 0.5 0.5 0.5

color ecliptic 0.3 0.3 0.3

color constellation_lines 0.7 0.7 0.7

color labels 0 0 0

color boundaries 0.8 0.8 0.8

color highlighted_boundaries 0 0 0

color milky_way 0.5 0.5 0.5

filename output test.tex # Here should it go

objects_and_labels # Now for the second part

delete M 18 NGC 6590 NGC 6634 ; # Delete superfluous

reposition SCO 20 S ; # Force sig Sco to be labelled.

text "\\Huge Sco" at 16.2 -41.5 color 0 0 0 towards NW ;

1 it’s Control-Z-Return on Windows

http://pp3.sourceforge.net

2 INTRODUCTION PP3 (Version 1.3) §2

2. The resulting LATEX file doesn’t use packages special to PP3. In fact the preamble is rather small. This
makes it possible to copy the (maybe huge) \vbox with the complete map into an own LATEX file. However
this may be a stupid decision because (especially if the Milky Way is switched on) this consumes much of
TEX’s pool size.

Some PP3 figures will need a lot of TEX’s memory. Normally this is problematic only if the Milky Way is
included. If you show a too large portion of the sky, and a lot of Milky Way area is involved, it may even
happen that LATEX simply cannot process it. You should use Milky Way data with lower resolution in this
case.

Make sure that the PSTricks package is properly installed.
Please note that you cannot use pdfLATEX with PP3, because PSTricks can’t be used with pdfLATEX. This

is not a problem. First, you can convert all EPS files easily to PDF by hand, and secondly PP3 can even call
PS2PDF for you.

3. In order to use the program, you must have a complete and modern LATEX distribution installed, and a
modern Ghostscript. On a Linux system, both programs are possibly already available, and if not you may
install them with a package management program.

On Windows, you will probably have to install them by hand. You can download the MikTEX distribution
or get the TEXLive CD. If you install Ghostscript, notice that GSView is a very sensible program, too.

4. Some flaws and bugs in this program are already known to its author.
The input script processing is shaky. The comment character ‘#’ must be at the beginning of a line or

must be preceded by whitespace. The special token “objects_and_labels” must not occur within strings.
If an error is found in the input script, PP3 doesn’t tell the line number. It should be possible to include
more than one file, and it should allow for a nesting depth greater than one.

At the moment almost all data structures are kept in memory completely. For the author’s needs this is
perfectly sufficient, however if you want to use data bases with hundreds of thousands of objects, you will
run into trouble. On the other hand it’s only necessary to keep all object in memory that are actually drawn.
So memory usage could be reduced drastically.

5. Okay, let’s start with the header files . . .

#include <iostream>

#include <string>

#include <fstream>

#include <sstream>

#include <vector>

#include <map>

#include <list>

#include <iomanip>

#include <cstdlib>

#include <cmath>

#include <cfloat>

using namespace std;

6. Global parameters and default values. I have to break a strict C++ rule here: Never use #define!
However I really found no alternative to OUT. No const construct worked, and if it had done, I’d have to
use it in every single routine. And ubiquitous ∗params.out’s are ugly.

#define OUT (∗params.out)

http://www.miktex.org
http://www.tug.org/texlive/
http://www.cs.wisc.edu/~ghost/doc/AFPL/get704.htm
http://www.cs.wisc.edu/~ghost/gsview/get43.htm

§7 PP3 (Version 1.3) GLOBAL PARAMETERS AND DEFAULT VALUES 3

7. The following makes it possible to compile a directory prefix into PP3 for the data files. By default, the
data files must be in the current directory. You may say e. g.

g++ −DPP3DATA=\"/usr/share/pp3/\" −O2 −s pp3.cc −o pp3

then they are searched in /usr/share/pp3/. If set, an environment variable called PP3DATA has highest
priority though.

const char ∗pp3data env raw = getenv("PP3DATA");
const string pp3data env = (pp3data env raw ≡ 0 ? "" : pp3data env raw);

#ifdef PP3DATA
const string pp3data(PP3DATA);

#else
const string pp3data;

#endif
const string filename prefix(¬pp3data env.empty() ? pp3data env + ’/’ : (pp3data.empty() ? "" :

pp3data + "/"));

4 GLOBAL PARAMETERS AND DEFAULT VALUES PP3 (Version 1.3) §8

8. I declare and define the structure parameters here.

〈Define color data structure 69 〉
struct parameters {

double center rectascension, center declination;
double view frame width, view frame height;
double grad per cm;
double label skip, minimal nebula radius, faintest cluster magnitude, faintest diffuse nebula magnitude,

faintest star magnitude, star scaling, minimal star radius, faintest star disk magnitude,
faintest star with label magnitude, shortest constellation line;

string constellation;
int font size;
double penalties label, penalties star, penalties nebula, penalties boundary, penalties boundary rim,

penalties cline, penalties cline rim, penalties threshold, penalties rim;
string filename stars, filename nebulae, filename dimensions, filename lines, filename boundaries,

filename milkyway, filename preamble, filename include;
string filename output;
ostream ∗out;
istream ∗in;
bool input file;
color bgcolor, gridcolor, eclipticcolor, boundarycolor, hlboundarycolor, starcolor, nebulacolor, labelcolor,

textlabelcolor, clinecolor, milkywaycolor;
double linewidth grid, linewidth ecliptic, linewidth boundary, linewidth hlboundary, linewidth cline,

linewidth nebula;
string linestyle grid, linestyle ecliptic, linestyle boundary, linestyle hlboundary, linestyle cline,

linestyle nebula;
bool milkyway visible, nebulae visible, colored stars, show grid, show ecliptic, show boundaries,

show lines, show labels;
bool create eps, create pdf ;

parameters()
: 〈Default values of all global parameters 9 〉{ }
int view frame width in bp()
{

return int(ceil(view frame width/2.54 ∗ 72));
}
int view frame height in bp()
{

return int(ceil(view frame height/2.54 ∗ 72));
}

} params;

§9 PP3 (Version 1.3) GLOBAL PARAMETERS AND DEFAULT VALUES 5

9. 〈Default values of all global parameters 9 〉 ≡
center rectascension(5.8), center declination(0.0), view frame width(15.0), view frame height(15.0),

grad per cm(4.0), constellation("ORI"), font size(10),
label skip(0.06), minimal nebula radius(0.1), faintest cluster magnitude(4.0),

faintest diffuse nebula magnitude(8.0), faintest star magnitude(7.0), star scaling(1.0),
minimal star radius(0.015), faintest star disk magnitude(4.5), faintest star with label magnitude(3.7),
shortest constellation line(0.1),

penalties label(1.0), penalties star(1.0), penalties nebula(1.0), penalties boundary(1.0),
penalties boundary rim(1.0), penalties cline(1.0), penalties cline rim(1.0), penalties threshold(1.0),
penalties rim(1.0),

filename stars(filename prefix + "stars.dat"), filename nebulae(filename prefix + "nebulae.dat"),
filename dimensions("labeldimens.dat"), filename lines(filename prefix + "lines.dat"),
filename boundaries(filename prefix + "boundaries.dat"),
filename milkyway(filename prefix + "milkyway.dat"),

filename preamble(), filename include(), filename output(), out(&cout), in(0), input file(false),
bgcolor("bgcolor", 0, 0, 0.4), gridcolor("gridcolor", 0, 0.298, 0.447), eclipticcolor("eclipticcolor", 1, 0, 0),

boundarycolor("boundarycolor", 0.5, 0.5, 0), hlboundarycolor("hlboundarycolor", 1, 1, 0),
starcolor("starcolor", 1, 1, 1), nebulacolor("nebulacolor", 1, 1, 1), labelcolor("labelcolor", 0, 1, 1),
textlabelcolor(1, 1, 0), clinecolor("clinecolor", 0, 1, 0), milkywaycolor(0, 0, 1),

linewidth grid(0.025), linewidth ecliptic(0.018), linewidth boundary(0.035), linewidth hlboundary(0.035),
linewidth cline(0.035), linewidth nebula(0.018),

linestyle grid("solid"), linestyle ecliptic("dashed"), linestyle boundary("dashed"),
linestyle hlboundary("dashed"), linestyle cline("solid"), linestyle nebula("solid"),

milkyway visible(false), nebulae visible(true), colored stars(true), show grid(true), show ecliptic(true),
show boundaries(true), show lines(true), show labels(true),

create eps(false), create pdf (false)
This code is used in section 8.

6 THE INPUT SCRIPT PP3 (Version 1.3) §10

10. The input script. The input script is a text file that is given as the first and only parameter to PP3. Its
format is very simple: First, a ‘#’ introduces a comment and the rest of the line is ignored. Secondly, every
command has an opcode–parameter(s) form. Thirdly, opcodes and parameters are separated by whitespace
(no matter which type and how much). Forthly, parameters and celestial objects must be separated by
“objects_and_labels”.

11. Part I: Global parameters. Every input script can be divided into two parts, however the second
may be absent. They are separated from each other by the token “objects_and_labels”. Here we process
the first part of the input script.

First two small helping routines that just read simple values from the file.

〈Routines for reading the input script 11 〉 ≡
bool read boolean(istream &script)
{

string boolean;

script � boolean;
if (boolean ≡ "on") return true;
else if (boolean ≡ "off") return false;
else

throw string("Expected \"on\" or \"off\" in \"switch\" construct ""in input script");
}

See also sections 12, 13, 21, 23, 24, 25, and 26.

This code is used in section 115.

§12 PP3 (Version 1.3) PART I: GLOBAL PARAMETERS 7

12. You can give strings in a similar way as on a shell command line: If it doesn’t contain spaces, just
input it. In the other case you have to enclose it within "...". The same is necessary if it starts with a ".
Within the double braces, backslashes and double braces have to be escaped with a backslash. This is not
necessary if you had a simple string.

So you may write e. g.: Leo, "Leo Minor", \alpha, and "{\\sfseries Leo}". An empty string can only
be written as "".

〈Routines for reading the input script 11 〉 +≡
string read string(istream &script)
{

const string UnexpectedEOS("Unexpected end of input script while re\
ading a"" string parameter");

char c;
string contents;

while (script.get(c))
if (¬isspace(c)) break;

if (¬script) throw UnexpectedEOS;
if (c 6= ’"’) {

script � contents;
if (script) contents.insert(contents.begin(), c);
else contents = c;

}
else {

while (script.get(c)) {
if (c ≡ ’"’) break;
if (c ≡ ’\\’) {

if (¬script.get(c)) throw UnexpectedEOS;
switch (c) {
case ’\\’: case ’"’: contents += c;

break;
default: throw string("Unknown escape sequence in string");
}

}
else contents += c;

}
if (¬script) throw UnexpectedEOS;

}
return contents;

}

8 PART I: GLOBAL PARAMETERS PP3 (Version 1.3) §13

13. Here the actual routine for this first part. The top-level keywords are: “color”, “line_width”,
“line_style”, “switch”, “penalties”, “filename”, and “set”.

〈Routines for reading the input script 11 〉 +≡
void read parameters from script(istream &script)
{

string opcode;

script � opcode;
while (opcode 6= "objects_and_labels" ∧ script) {

if (opcode[0] ≡ ’#’) { /∗ skip comment line ∗/
string rest of line;

getline(script, rest of line);
}
else 〈 Set color parameters 14 〉
else 〈 Set line widths 15 〉
else 〈 Set line styles 16 〉
else 〈 Set on/off parameters 17 〉
else 〈 Set penalty parameters 18 〉
else 〈 Set filename parameters 19 〉
else 〈 Set single value parameters 20 〉
else throw string("Undefined opcode in input script: \"") + opcode + ’"’;
script � opcode;

}
}

§14 PP3 (Version 1.3) PART I: GLOBAL PARAMETERS 9

14. Colours are given as red–green–blue values from 0 to 1. For example,

color labels 1 0 0

which makes all labels red. The following sub-keywords can be used: “background”, “grid”,
“ecliptic”, “boundaries”, “highlighted_boundaries”, “stars”, “nebulae”, “labels”, “text_labels”,
“constellation_lines”, and “milky_way”. In case of the milky way, the colour denotes the brightest
regions. (The darkest have background colour.)

〈 Set color parameters 14 〉 ≡
if (opcode ≡ "color") {

string color name;

script � color name;
if (color name ≡ "background") script � params.bgcolor;
else if (color name ≡ "grid") script � params.gridcolor;
else if (color name ≡ "ecliptic") script � params.eclipticcolor;
else if (color name ≡ "boundaries") script � params.boundarycolor;
else if (color name ≡ "highlighted_boundaries") script � params.hlboundarycolor;
else if (color name ≡ "stars") script � params.starcolor;
else if (color name ≡ "nebulae") script � params.nebulacolor;
else if (color name ≡ "labels") script � params.labelcolor;
else if (color name ≡ "text_labels") script � params.textlabelcolor;
else if (color name ≡ "constellation_lines") script � params.clinecolor;
else if (color name ≡ "milky_way") script � params.milkywaycolor;
else throw string("Undefined \"color\" construct"" in input script: \"") + color name + ’"’;

}
This code is used in section 13.

15. The following lines can be modified: “grid”, “ecliptic”, “boundaries”, “highlighted_
boundaries”, “nebulae”, and “constellation_lines”. The linewidth in centimetres must follow.

〈 Set line widths 15 〉 ≡
if (opcode ≡ "line_width") {

string line name;

script � line name;
if (line name ≡ "grid") script � params.linewidth grid;
else if (line name ≡ "ecliptic") script � params.linewidth ecliptic;
else if (line name ≡ "boundaries") script � params.linewidth boundary;
else if (line name ≡ "highlighted_boundaries") script � params.linewidth hlboundary;
else if (line name ≡ "nebulae") script � params.linewidth nebula;
else if (line name ≡ "constellation_lines") script � params.linewidth cline;
else

throw string("Undefined \"line_width\" construct"" in input script: \"")+ line name +’"’;
}

This code is used in section 13.

10 PART I: GLOBAL PARAMETERS PP3 (Version 1.3) §16

16. The following lines can be modified: “grid”, “ecliptic”, “boundaries”, “highlighted_
boundaries”, “nebulae”, and “constellation_lines”. You can set the respective line style to
“solid”, “dashed”, and “dotted”.

〈 Set line styles 16 〉 ≡
if (opcode ≡ "line_style") {

string line name;

script � line name;
if (line name ≡ "grid") script � params.linestyle grid;
else if (line name ≡ "ecliptic") script � params.linestyle ecliptic;
else if (line name ≡ "boundaries") script � params.linestyle boundary;
else if (line name ≡ "highlighted_boundaries") script � params.linestyle hlboundary;
else if (line name ≡ "nebulae") script � params.linestyle nebula;
else if (line name ≡ "constellation_lines") script � params.linestyle cline;
else

throw string("Undefined \"line_width\" construct"" in input script: \"")+ line name +’"’;
}

This code is used in section 13.

17. There are the following boolean values: “milky_may”, “nebulae”, “colored_stars”, “grid”,
“ecliptic”, “boundaries”, “constellation_lines”, “labels”, “eps_output”, and “pdf_output”. You
can switch them “on” or “off”.

〈 Set on/off parameters 17 〉 ≡
if (opcode ≡ "switch") {

string switch name;

script � switch name;
if (switch name ≡ "milky_way") params.milkyway visible = read boolean(script);
else if (switch name ≡ "nebulae") params.nebulae visible = read boolean(script);
else if (switch name ≡ "colored_stars") params.colored stars = read boolean(script);
else if (switch name ≡ "grid") params.show grid = read boolean(script);
else if (switch name ≡ "ecliptic") params.show ecliptic = read boolean(script);
else if (switch name ≡ "boundaries") params.show boundaries = read boolean(script);
else if (switch name ≡ "constellation_lines") params.show lines = read boolean(script);
else if (switch name ≡ "labels") params.show labels = read boolean(script);
else if (switch name ≡ "eps_output") params.create eps = read boolean(script);
else if (switch name ≡ "pdf_output") params.create pdf = read boolean(script);
else

throw string("Undefined \"switch\" construct"" in input script: \"") + switch name + ’"’;
}

This code is used in section 13.

§18 PP3 (Version 1.3) PART I: GLOBAL PARAMETERS 11

18. In order to avoid overlaps, PP3 uses a simple penalty algorithm. The standard value for all penalty val-
ues is 1000. The meanings of “stars”, “labels”, “nebulae”, “boundaries”, and “constellation_lines”
is pretty easy to explain: They come into play when the current label (that is to be positioned) overlaps with
the respective object. For example, if you want overlaps with constellation lines to be less probable, you
can say

penalties constellation_lines 2000

There is another concept of importance here: The rim. A rim is a rectangular margin around every label
with a width of skip. Overlaps in the rim are counted, too, however normally they don’t hurt that much.
Normally they hurt half as much as the label area (core) itself, but this can be changed with “rim”. With

penalties rim 0

the rim loses its complete significance. But notice that for each rim penalty a core penalty is added, too, so
that the rim can never be more significant than the core.

Within the rim, “boundaries_rim” and “constellation_lines_rim” are used instead of the normal
ones. This is because lines are not so bad in the rim as other stars or nebulae would be, because other stars
in the vicinity of a label may cause confusion, lines not.

The third thing about penalties is the maximal penalty of a label. If the penalties of a label exceed this
value, the label is supressed. You may overrule this behaviour with an explicit repositioning of the label.
You can adjust this maximal badness of the label with “threshold”. With

penalties threshold 10000

probably all labels are printed.

〈 Set penalty parameters 18 〉 ≡
if (opcode ≡ "penalties") {

string penalty name;
double value;

script � penalty name � value;
value /= 1000.0;
if (penalty name ≡ "stars") params.penalties star = value;
else if (penalty name ≡ "labels") params.penalties label = value;
else if (penalty name ≡ "nebulae") params.penalties nebula = value;
else if (penalty name ≡ "boundaries") params.penalties boundary = value;
else if (penalty name ≡ "boundaries_rim") params.penalties boundary rim = value;
else if (penalty name ≡ "constellation_lines") params.penalties cline = value;
else if (penalty name ≡ "constellation_lines_rim") params.penalties cline rim = value;
else if (penalty name ≡ "threshold") params.penalties threshold = value;
else if (penalty name ≡ "rim") params.penalties rim = value;
else

throw string("Undefined \"penalties\" construct"" in input script: \"") + penalty name +
’"’;

}
This code is used in section 13.

12 PART I: GLOBAL PARAMETERS PP3 (Version 1.3) §19

19. The most important filename is “output”. By default it’s unset so that the output is sent to standard
output. With

filename output orion.tex

the output is written to orion.tex. Most of the other filenames denote the data files. Their file format is
described at the functions that read them. Their names are: “stars”, “nebulae”, “label_dimensions”,
“constellation_lines”, “boundaries”, and “milky_way”.

“latex_preamble” is a file with a LATEX excerpt with a preamble fragment for the LATEX output. See
〈 create preamble() for writing the LATEX preamble 120 〉.

“include” denotes a file that is included at the current position as an insert script file. This command
particularly makes sense at the very beginning of the input script because then you can overwrite the values
locally. Note that you can only include zero or one file, and included script files must not contain further
includes. Apart from that included scripts have the same structure as usual scripts. (This is also true for a
possible ‘objects_and_labels’ part.)

The meaning of this is of course to write a master script with global settings (e. g. colour, line style, data
file names etc.), and to overwrite them for certain regions of the sky, typically stellar constellations.

〈 Set filename parameters 19 〉 ≡
if (opcode ≡ "filename") {

string object name;

script � object name;
if (object name ≡ "output") params.filename output = read string(script);
else if (object name ≡ "stars") params.filename stars = read string(script);
else if (object name ≡ "nebulae") params.filename nebulae = read string(script);
else if (object name ≡ "label_dimensions") params.filename dimensions = read string(script);
else if (object name ≡ "constellation_lines") params.filename lines = read string(script);
else if (object name ≡ "boundaries") params.filename boundaries = read string(script);
else if (object name ≡ "milky_way") params.filename milkyway = read string(script);
else if (object name ≡ "latex_preamble") params.filename preamble = read string(script);
else if (object name ≡ "include") {

if (¬params.filename include.empty())
throw string("Nesting depth of include files greater"" than one");

params.filename include = read string(script);

ifstream included script(params.filename include.c str());

read parameters from script(included script);
}
else

throw string("Undefined \"filename\" construct"" in input script: \"")+object name +’"’;
}

This code is used in section 13.

§20 PP3 (Version 1.3) PART I: GLOBAL PARAMETERS 13

20. Most of these values are numeric, only constellation is a string, namely a three-letter all-uppercase
astronomic abbreviation of the constellation to be highlighted. It’s default is “ORI” but you may set it to the
empty string with

set constellation ""

so no constellation gets highlighted. At the moment highlighting means that the boundaries have a brighter
colour than normal.

“center_rectascension” and “center_declination” are the celestial coordinates of the view
frame centre. “box_width” and “box_height” are the dimensions of the view frame in centimetres.
“grad_per_cm” is the magnification (scale). “star_scaling” denotes a radial scaling of the star disks.
“fontsize” is the global LATEX font size (in points). It must be 10, 11, or 12. Default is 10.

Many parameters deal with the graphical representation of stars and nebulae:
“shortest_constellation_line” is the shortest length for a constellation line that is supposed to
be drawn. “label_skip” is the distance between label and celestial object. “minimal_nebula_radius”
is the radius under which a nebula is drawn as a mere circle of that radius. “minimal_star_radius”
is the radius of the smallest stellar dots of the graphics. All these parameters are measured in
centimetres.

But there are also some magnitudes: The faintest stellar clusters that are drawn by de-
fault are of the “faintest_cluster_magnitude”, all other nebulae drawn by default of the
“faintest_diffuse_nebula_magnitude”. Stars brighter than “faintest_star_magnitude” are drawn
at all, if they are even brighter than “faintest_star_with_label_magnitude” they get a label. Stars
brighter than “faintest_star_disk_magnitude” are not just mere dots in the background, but get a
radius according to their brightness.

Many of these parameters trigger the default behaviour that you can overrule by commands in the second
part of the input script.

〈 Set single value parameters 20 〉 ≡
if (opcode ≡ "set") {

string param name;

script � param name;
if (param name ≡ "center_rectascension") script � params.center rectascension;
else if (param name ≡ "center_declination") script � params.center declination;
else if (param name ≡ "box_width") script � params.view frame width;
else if (param name ≡ "box_height") script � params.view frame height;
else if (param name ≡ "grad_per_cm") script � params.grad per cm;
else if (param name ≡ "constellation") params.constellation = read string(script);
else if (param name ≡ "shortest_constellation_line") script � params.shortest constellation line;
else if (param name ≡ "label_skip") script � params.label skip;
else if (param name ≡ "minimal_nebula_radius") script � params.minimal nebula radius;
else if (param name ≡ "faintest_cluster_magnitude") script � params.faintest cluster magnitude;
else if (param name ≡ "faintest_diffuse_nebula_magnitude")

script � params.faintest diffuse nebula magnitude;
else if (param name ≡ "faintest_star_magnitude") script � params.faintest star magnitude;
else if (param name ≡ "minimal_star_radius") script � params.minimal star radius;
else if (param name ≡ "faintest_star_disk_magnitude")

script � params.faintest star disk magnitude;
else if (param name ≡ "faintest_star_with_label_magnitude")

script � params.faintest star with label magnitude;
else if (param name ≡ "star_scaling") script � params.star scaling;
else if (param name ≡ "fontsize") script � params.font size;

14 PART I: GLOBAL PARAMETERS PP3 (Version 1.3) §20

else throw string("Undefined \"set\" construct in input script: \"") + param name + ’"’;
}

This code is used in section 13.

21. Part II: Change printed objects and labels. Here I read and interpret the second part of the input
script, after the "objects_and_labels". This part doesn’t need to be available, and both parts may be
empty.

First I define a type that is often used in the following routines for a mapping from a catalogue number
on the index in PP3’s internal vectors. This makes access a lot faster.

〈Routines for reading the input script 11 〉 +≡
typedef map〈int, int〉 index list;

22. Here I create the data structures that make the above mentioned mapping possible. FixMe: They
should be defined globally, so that the constellation lines construction can profit by it, too. And then they
needn’t be given in the parameter lists of the routines.

This mapping is not vital for the program, but the alternative would be to look through the whole of
nebulae or stars to find a star with a certain NGC or HD number. This is probably way to inefficient.

〈Create mapping structures for direct catalogue access 22 〉 ≡
const int max ngc = 7840, max ic = 5386, max messier = 110;
index list ngc, ic, messier;

for (int i = 0; i < nebulae.size(); i++) {
if (nebulae[i].ngc > 0 ∧ nebulae[i].ngc ≤ max ngc) ngc[nebulae[i].ngc] = i;
if (nebulae[i].ic > 0 ∧ nebulae[i].ic ≤ max ic) ic[nebulae[i].ic] = i;
if (nebulae[i].messier > 0 ∧ nebulae[i].messier ≤ max messier) messier[nebulae[i].messier] = i;

}
index list henry draper;
map〈string, index list〉 flamsteed;

for (int i = 0; i < stars.size(); i++) {
if (stars[i].hd > 0) henry draper[stars[i].hd] = i;
if (stars[i].flamsteed > 0) flamsteed[stars[i].constellation][stars[i].flamsteed] = i;

}
This code is used in section 26.

§23 PP3 (Version 1.3) PART II: CHANGE PRINTED OBJECTS AND LABELS 15

23. This is a general warning producing routine. Such tests are vital, especially if the nebulae file has been
deleted in order to save disk space. I want it to be a warning because it would be very annowing to delete
all such opcodes from an input script only because one wants to dispense with e. g. nebulae.

I need three incarnations of this function: One for nebulae, one for Flamsteed number, and one for Henry
Draper catalogue numbers.

〈Routines for reading the input script 11 〉 +≡
bool assure valid catalogue index(const int index, const index list &catalogue, const string catalogue name)
{

if (catalogue.find(index) ≡ catalogue.end()) {
cerr � "pp3: Warning: Invalid " � catalogue name � " index: " � index � ".\n";
return false;

}
else return true;

}
bool assure valid catalogue index(const int index, const string constellation, map〈string, index list〉

&flamsteed)
{

bool found = true;

if (flamsteed.find(constellation) ≡ flamsteed.end()) found = false;
else if (flamsteed[constellation].find(index) ≡ flamsteed[constellation].end()) found = false;
if (¬found) cerr � "pp3: Warning: Invalid Flamsteed number: " � index � ".\n";
return found;

}
bool assure valid catalogue index(const int index, const index list &henry draper)
{

if (henry draper.find(index) ≡ henry draper.end()) {
cerr � "pp3: Warning: Invalid HD number: " � index � ".\n";
return false;

}
else return true;

}

16 PART II: CHANGE PRINTED OBJECTS AND LABELS PP3 (Version 1.3) §24

24. In this routine I scan a list of stellar objects, given by a token pair of catalogue name and catalogue
index. Such lists are used after some top-level commands below. A mandatory ‘;’ ends such a list. Five
catalogues are supported: NGC, IC, Messier, Henry-Draper (HD), and Flamsteed numbers (in the form
“Constellation Flamsteed number”). You may use the program ‘Celestia’ to get the HD numbers for the stars.

〈Routines for reading the input script 11 〉 +≡
void search objects(istream &script, index list &ngc, index list &ic, index list &messier, index list

&henry draper, map〈string, index list〉 &flamsteed, vector〈int〉 &found stars, vector〈int〉
&found nebulae)

{
found stars.clear();
found nebulae.clear();

string catalogue name;
int catalogue index;

script � catalogue name;
while (script ∧ catalogue name 6= ";") {

script � catalogue index;
if (catalogue index ≤ 0) {

stringstream error message;

error message � "Invalid index: " � catalogue index;
throw error message.str();

}
if (¬script) throw string("Unexpected end of input script");
if (params.nebulae visible ∨ (catalogue name 6= "NGC" ∧ catalogue name 6= "IC" ∧ catalogue name 6= "M"))
{
if (catalogue name ≡ "NGC") {

if (assure valid catalogue index(catalogue index, ngc, "NGC"))
found nebulae.push back(ngc[catalogue index]);

}
else if (catalogue name ≡ "IC") {

if (assure valid catalogue index(catalogue index, ic, "IC"))
found nebulae.push back(ic[catalogue index]);

}
else if (catalogue name ≡ "M") {

if (assure valid catalogue index(catalogue index, messier, "M"))
found nebulae.push back(messier[catalogue index]);

}
else if (catalogue name ≡ "HD") {

if (assure valid catalogue index(catalogue index, henry draper))
found stars.push back(henry draper[catalogue index]);

}
else {

if (assure valid catalogue index(catalogue index, catalogue name, flamsteed))
found stars.push back(flamsteed[catalogue name][catalogue index]);

}
}
script � catalogue name;

}
}

§25 PP3 (Version 1.3) PART II: CHANGE PRINTED OBJECTS AND LABELS 17

25. This routine essentially does the same as the prevous one, however only for one celestial object. This
is used for commands that don’t take an object list but only one object.

〈Routines for reading the input script 11 〉 +≡
view data ∗ identify object(istream &script, index list &ngc, index list &ic, index list &messier, index list

&henry draper, map〈string, index list〉 &flamsteed, stars list &stars, nebulae list & nebulae)
{

string catalogue name;
int catalogue index;

script � catalogue name � catalogue index;
if (¬script) throw string("Unexpected end of input script");
if (catalogue name ≡ "NGC") {

if (assure valid catalogue index(catalogue index, ngc, "NGC")) return &nebulae[ngc[catalogue index]];
}
else if (catalogue name ≡ "IC") {

if (assure valid catalogue index(catalogue index, ic, "IC")) return &nebulae[ic[catalogue index]];
}
else if (catalogue name ≡ "M") {

if (assure valid catalogue index(catalogue index, messier, "M"))
return &nebulae[messier[catalogue index]];

}
else if (catalogue name ≡ "HD") {

if (assure valid catalogue index(catalogue index, henry draper))
return &stars[henry draper[catalogue index]];

}
else {

if (assure valid catalogue index(catalogue index, catalogue name, flamsteed))
return &stars[flamsteed[catalogue name][catalogue index]];

}
return 0;

}

18 PART II: CHANGE PRINTED OBJECTS AND LABELS PP3 (Version 1.3) §26

26. Here now the main routine for the second part of the input script. The top-level commands in this
section are: “reposition”, “delete_labels”, “add_labels”, “delete”, “add”, “set_text_label”, and
“text”.

〈Routines for reading the input script 11 〉 +≡
void read objects and labels(istream &script, const dimensions list &dimensions, objects list & objects,

stars list &stars, nebulae list & nebulae, texts list & texts, flexes list & flexes, const transformation
&mytransform, bool included = false)

{
if (¬params.filename include.empty() ∧ ¬included) {

ifstream included file(params.filename include.c str());

〈 Skip everything till "objects_and_labels" 27 〉
read objects and labels(included file, dimensions, objects, stars, nebulae, texts, flexes, mytransform, true);

}
string opcode;

script � opcode;
if (¬script) return;
〈Create mapping structures for direct catalogue access 22 〉
while (script) {

if (opcode[0] ≡ ’#’) { /∗ skip comment line ∗/
string rest of line;

getline(script, rest of line);
}
else 〈Label repositioning 28 〉
else 〈Change label text 30 〉
else 〈Text labels 35 〉
else { /∗ command with objects list ∗/

vector〈int〉 found stars, found nebulae;

〈Label deletion 31 〉
else 〈Label activation 32 〉
else 〈Celestial object deletion 34 〉
else 〈Celestial object activation 33 〉
else throw string("Undefined opcode in input script: \"") + opcode + ’"’;

}
script � opcode;

}
}

§27 PP3 (Version 1.3) PART II: CHANGE PRINTED OBJECTS AND LABELS 19

27. The following algorithm is so bad that it must be considered a bug. It simply searches for the string
"objects_and_labels" in the included file, but that may occur within a string or wherever. The file should
be properly scanned, but I’m too lazy for that. A case where this bug becomes visible should be very rare
anyway.

FixMe: Fix this bug, or at least for strings. Maybe the format of input scripts must be changed signifi-
cantly for this.

〈 Skip everything till "objects_and_labels" 27 〉 ≡
string token;

included file � token;
while (included file) {

if (token[0] ≡ ’#’) getline(included file, token);
else if (token ≡ "objects_and_labels") break;
included file � token;

}
This code is used in section 26.

28. Sometimes labels have an unfortunate position. But you may say e. g.

reposition M 42 E ;

to position the label for the Orion Nebula to the right of it. (Abbreviations are taken from the wind rose.)
You may use this command to force a certain label to be drawn although PP3 has decided that there is no
space for it and didn’t print it in the first place.

If you write “E_” or “W_” the label text is not vertically centred but aligned with the celestrial coordinates
at the baseline of the label text.

At the moment, this command takes exactly one argument. However the closing semicolon is necessary.

〈Label repositioning 28 〉 ≡
if (opcode ≡ "reposition") {

string position, semicolon;

view data ∗ current object = identify object(script, ngc, ic, messier, henry draper, flamsteed, stars, nebulae);

int angle;
bool on baseline = false;

script � position � semicolon;
if (semicolon 6= ";") throw string("Expected \";\" after \"reposition\" command");
〈Map a wind rose position to an angle and determine on baseline 29 〉
if (current object) {

current object~ label angle = angle;
current object~with label = visible;
current object~on baseline = on baseline;
current object~ label arranged = true;

}
}

This code is used in section 26.

20 PART II: CHANGE PRINTED OBJECTS AND LABELS PP3 (Version 1.3) §29

29. 〈Map a wind rose position to an angle and determine on baseline 29 〉 ≡
if (position ≡ "E" ∨ position ≡ "E_") angle = 0;
else if (position ≡ "NE") angle = 1;
else if (position ≡ "N") angle = 2;
else if (position ≡ "NW") angle = 3;
else if (position ≡ "W" ∨ position ≡ "W_") angle = 4;
else if (position ≡ "SW") angle = 5;
else if (position ≡ "S") angle = 6;
else if (position ≡ "SE") angle = 7;
else throw string("Undefined position angle: ") + position;
on baseline = position[position.length() − 1] ≡ ’_’;

This code is used in sections 28 and 35.

30. PP3 reads default labels from the stars and nebulae data files. But you may say e. g.

set_label_text ORI 19 Rigel

to rename “α” (Orionis) to “Rigel”.

〈Change label text 30 〉 ≡
if (opcode ≡ "set_label_text") {

view data ∗ current object = identify object(script, ngc, ic, messier, henry draper, flamsteed, stars, nebulae);
if (current object) current object~ label = read string(script);

}
This code is used in section 26.

31. With e. g.
delete_labels M 35 M 42 ;

you delete the labels (not the nebulae themselves!) of M 35 and M 42.

〈Label deletion 31 〉 ≡
if (opcode ≡ "delete_labels") {

search objects(script, ngc, ic, messier, henry draper, flamsteed, found stars, found nebulae);
for (int i = 0; i < found stars.size(); i++) {

stars[found stars[i]].with label = hidden;
stars[found stars[i]].label arranged = true;

}
for (int i = 0; i < found nebulae.size(); i++) {

nebulae[found nebulae[i]].with label = hidden;
nebulae[found nebulae[i]].label arranged = false;

}
}

This code is used in section 26.

§32 PP3 (Version 1.3) PART II: CHANGE PRINTED OBJECTS AND LABELS 21

32. The counterpart of delete_labels. It makes sense first and foremost for stars. (Unfortunately this
means that you have to use extensively the Henry Draper Catalogue.)

〈Label activation 32 〉 ≡
if (opcode ≡ "add_labels") {

search objects(script, ngc, ic, messier, henry draper, flamsteed, found stars, found nebulae);
for (int i = 0; i < found stars.size(); i++) stars[found stars[i]].with label = visible;
for (int i = 0; i < found nebulae.size(); i++) nebulae[found nebulae[i]].with label = visible;

}
This code is used in section 26.

33. This adds objects (mostly nebulae) the the field. Notice that this object is then printed even if it lies
outside the view frame (it may be clipped though).

〈Celestial object activation 33 〉 ≡
if (opcode ≡ "add") {

search objects(script, ngc, ic, messier, henry draper, flamsteed, found stars, found nebulae);
for (int i = 0; i < found stars.size(); i++) stars[found stars[i]].in view = visible;
for (int i = 0; i < found nebulae.size(); i++) nebulae[found nebulae[i]].in view = visible;

}
This code is cited in section 34.

This code is used in section 26.

34. The opposite of 〈Celestial object activation 33 〉.
〈Celestial object deletion 34 〉 ≡

if (opcode ≡ "delete") {
search objects(script, ngc, ic, messier, henry draper, flamsteed, found stars, found nebulae);
for (int i = 0; i < found stars.size(); i++) stars[found stars[i]].in view = hidden;
for (int i = 0; i < found nebulae.size(); i++) nebulae[found nebulae[i]].in view = hidden;

}
This code is used in section 26.

22 PART II: CHANGE PRINTED OBJECTS AND LABELS PP3 (Version 1.3) §35

35. This is the only way to add a text label. The parameters are the text itself, rectascension, declination,
RGB colour, and the relative position (uppercase wind rose), followed by a semicolon. For example,

text Leo at 11 10 color 1 0 0 towards S ;

puts a red “Leo” centered below the point (11 h, +10◦) in the Lion. You may leave out the “color” and/or
the “towards” option. The default colour is the last given colour in a previous text command, or if this
doesn’t exist the current text label colour. The default value of “towards” is "NE".

The contents of a text label is eventually in an \hbox, so you can use that fact. You can also use all PSTricks
commands. For example, with

text "\\psdots[dotstyle=+,dotangle=45](0,0)\\scriptsize\\ N pole of ecliptic"
at 18 66.56 towards E_ ;

the × marks the northern ecliptical pole, together with a small label text. If such things occur frequently,
define it as a LATEX macro.

If you write “E_” or “W_” the label text is not vertically centred but aligned with the celestrial coordinates
at the baseline of the label text.

A “declination flex” is a special text label that stands on a circle of equal declination which can look very
nice. You get it with the option “along declination” in the parameter list of the text label.

If you use the tics option the label is printed along a rectascension or declination circle multiple times,
making it possible to print tic marks. For example,

text "$#3$" at 0 20 along declination tics rectascension 1 towards N ;
text "$#5$" at 11 0 along declination tics declination 10 towards S ;

creates automatically generated labels for the 20◦ declination circle (every whole hour), and for the 11h

rectascension line (every 10 declination degrees). See the explanation for 〈Generate contents from current
coordinates 37 〉 for further details.

〈Text labels 35 〉 ≡
if (opcode ≡ "text") {

string token, contents, position("NE");
double rectascension, declination;

contents = read string(script);
script � token;
if (token 6= "at") throw string("\"at\" in \"text\" command expected");
script � rectascension � declination;
script � token;

int angle = 1; /∗ "NE" ∗/
bool on baseline = false;
enum {

kind text label, kind flex declination
} label kind = kind text label;
double step rectascension = −1.0; /∗ −1 means that no maks are produced. ∗/
double step declination = −1.0;

while (script ∧ token 6= ";") {
if (token ≡ "color") script � params.textlabelcolor;
else if (token ≡ "towards") {

script � position;
〈Map a wind rose position to an angle and determine on baseline 29 〉

§35 PP3 (Version 1.3) PART II: CHANGE PRINTED OBJECTS AND LABELS 23

}
else if (token ≡ "along") {

script � token;
if (token ≡ "declination") {

label kind = kind flex declination;
}
else throw string("Invalid \"along\" option");

}
else if (token ≡ "tics") {

script � token;
if (token ≡ "rectascension") {

script � step rectascension;
if (step rectascension ≤ 0.0) throw string("Invalid \"tics\" interval");
step declination = −1.0;

}
else if (token ≡ "declination") {

script � step declination;
if (step declination ≤ 0.0) throw string("Invalid \"tics\" interval");
step rectascension = −1.0;

}
else throw string("Invalid \"tics\" option");

}
else throw string("Invalid \"text\" option");
script � token;

}
if (¬script) throw string("Unexpected end of script while scanning \"text\"");
if (step rectascension ≤ 0.0 ∧ step declination ≤ 0.0) {
〈 Insert text label into label container structure 36 〉

}
if (step rectascension > 0.0) {

string user pattern(contents);
double start = rectascension − floor(rectascension/step rectascension) ∗ step rectascension;

for (rectascension = start; rectascension < 24.0; rectascension += step rectascension) {
cerr � rectascension � ’ ’;
〈Generate contents from current coordinates 37 〉
〈 Insert text label into label container structure 36 〉

}
}
else if (step declination > 0.0) {

string user pattern(contents);
double start = declination − floor((declination + 90.0)/step declination) ∗ step declination;

for (declination = start; declination ≤ 90.0; declination += step declination) {
cerr � declination � ’ ’;
〈Generate contents from current coordinates 37 〉
〈 Insert text label into label container structure 36 〉

}
}

}
This code is used in section 26.

24 PART II: CHANGE PRINTED OBJECTS AND LABELS PP3 (Version 1.3) §36

36. FixMe: Eventually this section must be a clean function call. I insert a text label or a flex into the
correct data structure.

〈 Insert text label into label container structure 36 〉 ≡
switch (label kind) {
case kind text label:

texts.push back(text(contents, rectascension, declination, params.textlabelcolor, angle, on baseline));
break;

case kind flex declination: flexes.push back(new declination flex(contents, rectascension, declination,
params.textlabelcolor, angle, on baseline));

break;
}

This code is used in section 35.

37. FixMe: Eventually this section must be a clean function call. Here I create the LATEX macro for the tics
marks. It is called \coordinates and has nine parameters, however not all are used so far:

#1 Rectascension in hours.
#2 Declination in degrees.
#3 Rectascension in integer hours (truncated, not rounded).
#4 Rectascension fraction of hour in minutes (truncated, not rounded).
#5 Declination in rounded integer degrees.

All decimal points are replaced by “{\DP}” commands.

〈Generate contents from current coordinates 37 〉 ≡
{

stringstream coordinates;

coordinates.setf (ios ::fixed);
coordinates � "\\def\\coordinates#1#2#3#4#5#6#7#8#9{\\TicMark{" � user pattern � "}}";
coordinates � "\\coordinates{" � rectascension � "}{" � declination � "}{";
coordinates � int(floor(rectascension)) � "}{" � int(floor((rectascension − floor(rectascension)) ∗ 60.0)) �

"}{";
if (int(declination) > 0.0) coordinates � ’+’;
coordinates � int(declination) � "}{}{}{}{}";
contents = coordinates.str();
while (contents.find(".") 6= string ::npos) contents.replace(contents.find("."), 1, "{\\DP}");

}
This code is cited in section 35.

This code is used in section 35.

§38 PP3 (Version 1.3) DATA STRUCTURES AND FILE FORMATS 25

38. Data structures and file formats. First I describe the data structures that directly contain celestial
objects such as stars and nebulae. This is a little bit unfortunate for the program itself, because actually
other things should be defined first (e. g. dimension). However I think that the program can be digested
more easily this way.

All data structures are structs and no classes. The reason is that they are all very simple and all object
oriented security measures are only hindering.

For each data type called classname I define a container called classnames list that is a vector. For almost
each data type I define a routine that can read it from a file in the vector. There I also decribe the respective
file format.

26 VIEW DATA: POSITIONING AND LABELS PP3 (Version 1.3) §39

39. View data: Positioning and labels. This first struct can be used as an ancestor in the various celestial
objects data structurs (e. g. stars) for containing all view frame dependent information. Most importantly it
contains the label of a celestial object, its position relatively to the object, and its size.

in view is visible if the object is actually displayed on screen. x and y contain the screen coordinates in
centimetres. radius is the radial size of the object in centimetres. skip is given in centimetres, too. It denotes
the space between the outer boundary of the object (enclosed by radius) and the label.

with label is visible if the object has a label, with label width, label height, label depth (estimated in centime-
tres) and label angle. Please note the all heights in PP3 are total heights, thus the same as TEX’s height + depth!

on baseline is true, if the baseline of the label text is supposed to be vertically aligned with the celestial
position. (This works not for all label angles.)

label arranged is true if the best place for the label has been found already. Only then the label should be
really printed, but the real use of label arranged is that it avoids the label to be arranged twice. lable angle
can only have eight possible values: 0: 0◦, 1: 45◦, 2: 90◦, 3: 135◦, 4: 180◦, 5: 225◦, 6: 270◦, and 7: 315◦.

scope() returns the maximal scope of the object. It is used in 〈 Find objects in vicinity of objects[i] 83 〉 to
find all objects in the vicinity of a given on-object.

typedef enum {
hidden, visible, undecided

} visibility;
struct view data {

visibility in view;
double x, y;
double radius, skip;
visibility with label;
bool label arranged;
string label;
double label width, label height, label depth;
bool on baseline;
color label color;
int label angle;

view data()
: in view(undecided), x(DBL_MAX), y(DBL_MAX), radius(0.0), skip(params.label skip), with label(undecided),

label arranged(false), label(), label width(0.0), label height(0.0), label depth(0.0), on baseline(false),
label color(params.labelcolor), label angle(0) { }

void get label boundaries(double &left, double &right, double &top, double &bottom) const;

double scope() const
{

return radius + skip + fmax(label width, label height) + 2.0 ∗ skip;
}
bool has valid coordinates() const
{

return x 6= DBL_MAX ∧ y 6= DBL_MAX;
}
virtual double penalties with(const double left, const double right, const double top, const double

bottom, bool core = true) const;
};

§40 PP3 (Version 1.3) VIEW DATA: POSITIONING AND LABELS 27

40. This is the only structure that is not put into a container directly, but via references. The reason is the
virtual routine penalties with(); I want to use polymorphy.

typedef vector〈view data ∗〉 objects list;

41. Each label is stored in view data by its dimensions, its skip, the radius of the object itself, and the
label angle. While these quantities are very convenient to use for the positioning of the label, they are pretty
unfortunate if you want to know which coordinates are occupied by the label in order to find out possible
overlaps.

Therefore I calculate here the rectangular boundaries of a label. They are stored in left, right, top, and
bottom in screen centimetres.

void view data ::get label boundaries(double &left, double &right, double &top, double &bottom) const
{

const double origin x = x + (radius + skip) ∗ cos(M_PI_4 ∗ double(label angle));
const double origin y = y + (radius + skip) ∗ sin(M_PI_4 ∗ double(label angle));

switch (label angle) {
case 0: case 1: case 7: left = origin x;

break;
case 2: case 6: left = origin x − label width/2.0;

break;
case 3: case 4: case 5: left = origin x − label width;

break;
}
right = left + label width;
switch (label angle) {
case 0: case 4: bottom = origin y − (on baseline ? 0.0 : label height/2.0);

break;
case 1: case 2: case 3: bottom = origin y;

break;
case 5: case 6: case 7: bottom = origin y − label height;

break;
}
if (on baseline) bottom −= label depth;
top = bottom + label height;

}

28 VIEW DATA: POSITIONING AND LABELS PP3 (Version 1.3) §42

42. Every object of type view data (or a descendant of it) must be able to calculate the overlap of itself
with a rectangle given by left, right, top, and bottom. It must then create a penalty value out of it. Normally
this is just the overlap itself in square centimetres, like here.

double view data ::penalties with(const double left, const double right, const double top, const double
bottom, bool core) const

{
if (with label ≡ visible ∧ label arranged) {

double left2, right2, top2, bottom2;

get label boundaries(left2, right2, top2, bottom2);

const double overlap left = fmax(left, left2);
const double overlap right = fmin(right, right2);
const double overlap top = fmin(top, top2);
const double overlap bottom = fmax(bottom, bottom2);
const double overlap x = fdim(overlap right, overlap left);
const double overlap y = fdim(overlap top, overlap bottom);

return overlap x ∗ overlap y ∗ params.penalties label;
}
else return 0.0;

}

43. Stars. The actual star data is – like all other user defined data structure in this program – organised
as a struct because it’s too simple for a class. hd is the Henry Draper Catalog number, bs is the Bright
Star Catalog number. rectascension is given in hours, declination in degrees. b v is the B−V brightness in
magnitudes (equals mphot − mvis) and thus contains colour. name either contains the Bayer name (only the
Greek letter and maybe an exponent number), or, if this doesn’t exist, the Flamsteed number as a string.
spectral class is the complete spectral class, starting with "F6" or whatever.

struct star : public view data {
int hd, bs;
double rectascension, declination;
double magnitude;
double b v;
int flamsteed;
string name;
string constellation;
string spectral class;

star()
: hd(0), bs(0), rectascension(0.0), declination(0.0), magnitude(0.0), b v(0.0), flamsteed(0), name(""),

spectral class(""), view data() { }
virtual double penalties with(const double left, const double right, const double top, const double

bottom, bool core = true) const;
};

§44 PP3 (Version 1.3) STARS 29

44. In order to find the penalties with a (labelled) star, I first calculate them for the label itself, which
may be 0.0, in particular if label arranged is still false. Then I determine the rectangular overlap, just like in
view data ::penalties with(). This is unfortunate, because stars are circles and not rectangles. FixMe: This
should be done justice to.

double star ::penalties with(const double left, const double right, const double top, const double
bottom, bool core) const

{
double penalties = view data ::penalties with(left, right, top, bottom, core);
const double left2 = x − radius, right2 = x + radius, top2 = y + radius, bottom2 = y − radius;
const double overlap left = fmax(left, left2);
const double overlap right = fmin(right, right2);
const double overlap top = fmin(top, top2);
const double overlap bottom = fmax(bottom, bottom2);
const double overlap x = fdim(overlap right, overlap left);
const double overlap y = fdim(overlap top, overlap bottom);

penalties += overlap x ∗ overlap y ∗ params.penalties star;
return penalties;

}
typedef vector〈star〉 stars list;

45. I want to be able to read the star data records from a text format file. The format of the input is a text
stream with the following format. Each star entry consists of four lines:

1. A row with seven fields separated by whitespace:
– Henry Draper Catalogue number (int, ‘0’ if unknown),
– BSC number (int, ‘0’ if unknown),
– rectascension in hours (double),
– declination in degrees (double),
– visual brightness in magnitudes (double),
– B−V brightness in magnitudes (double, ‘99.0’ if unknown),
– Flamsteed number (int, ‘0’ if unknown).

2. The label (astronomical name) for the star, as a LATEX-ready string, e. g. “α”, “ϕ^{2}”, or
simply “23”. May be the empty string.

3. The astronomical abbreviation of the constellation. It must be all uppercase.
4. The spectral class. It must start with the spectral class letter, followed by the fraction digit, followed

by the luminosity class as a Roman number, e. g. “F5III”. Anything may follow as in “K2−IIICa−1”,
however the mandatory parts must not contain any whitespace.

istream &operator�(istream &in, star &s)
{

in � s.hd � s.bs � s.rectascension � s.declination � s.magnitude � s.b v � s.flamsteed;

char ch;

do in.get(ch); while (in ∧ ch 6= ’\n’);
getline(in, s.name);
getline(in, s.constellation);
getline(in, s.spectral class);
return in;

}

30 STARS PP3 (Version 1.3) §46

46. Here I read a set of stars from a file with the name filename. The file stars file is a text file that consists
solely of a list of stars.

void read stars(stars list &stars)
{

ifstream stars file(params.filename stars.c str());

if (¬stars file) throw string("No stars file found: " + params.filename stars);

star current star;

stars file � current star;
while (stars file) {

current star.label = string("\\Starname{") + current star.name + ’}’;
stars.push back(current star);
stars file � current star;

}
}

47. Nebulae. This is also used for stellar clusters of course. In the whole program “nebula” denotes
nebulae, galaxies, clusters, and other non-stellar objects.

typedef enum {
unknown, galaxy, emission, reflection, open cluster, globular cluster

} nebula kind;

48. Since nebulae appear on the screen next to stars, and because they can have labels, they are descen-
dants of view data, too.

ngc, ic, and messier are of course the respective catalogue number. Since it’s silly that ngc and ic are
defined, a value of ‘0’ means that the nebula is not part of the respective catalogue. constellation is a three-
character string with the name of the respective constellation in all uppercase. rectascension is given in
hours, declination in degrees. diameter x and diameter y are the extent of the nebula in the horizonal and the
vertical direction and are given in degrees, horizontal angle (in degrees) is the angle between the horizontal
axis of diameter x and the intersecting celestial rectascension circle. magnitude (in magnitudes) is the total
brightness (not the brightness density).

struct nebula : public view data {
int ngc, ic, messier; /∗ 0 if not defined. ∗/
string constellation;
double rectascension, declination;
double magnitude;
double diameter x, diameter y;
double horizontal angle;
nebula kind kind;

nebula()
: ngc(0), ic(0), messier(0), constellation(), rectascension(0.0), declination(0.0), magnitude(0.0),

diameter x(0.0), diameter y(0.0), horizontal angle(0.0), kind(unknown) { }
virtual double penalties with(const double left, const double right, const double top, const double

bottom, bool core = true) const;
};
typedef vector〈nebula〉 nebulae list;

§49 PP3 (Version 1.3) NEBULAE 31

49. In order to find the penalties with a (labelled) nebula, I first calculate them for the label itself, which
may be 0.0, in particular if label arranged is still false. Then I determine the rectangular overlap, just like
in view data ::penalties with(). This is unfortunate, because nebulae are circles and not rectangles. FixMe:
This should be done justice to.

double nebula ::penalties with(const double left, const double right, const double top, const double
bottom, bool core) const

{
double penalties = view data ::penalties with(left, right, top, bottom, core);
const double left2 = x − radius, right2 = x + radius, top2 = y + radius, bottom2 = y − radius;
const double overlap left = fmax(left, left2);
const double overlap right = fmin(right, right2);
const double overlap top = fmin(top, top2);
const double overlap bottom = fmax(bottom, bottom2);
const double overlap x = fdim(overlap right, overlap left);
const double overlap y = fdim(overlap top, overlap bottom);

penalties += overlap x ∗ overlap y ∗ params.penalties nebula;
return penalties;

}

50. As you can see, the file format for a nebulae file is very simple, because there are no string fields with
possible whitespace within them. It’s just a stream of fields separated by whitespace. kind is an int, and it’s
the canonical translation of the nebula kind to int.

If the horizontal angle is unknown, is must be 720.0. diameter y must always have a valid value, even if
it’s actually unknown; in this case it must be equal to diameter y.

istream &operator�(istream &in, nebula &n)
{

int kind;

in � n.ngc � n.ic � n.messier � n.constellation � n.rectascension � n.declination � n.magnitude �
n.diameter x � n.diameter y � n.horizontal angle � kind;

n.kind = nebula kind(kind);
return in;

}

51. Here I read a set of nebulae from a file with the name filename. The format is just a stream of nebulae.

void read nebulae(nebulae list &nebulae)
{

ifstream nebulae file(params.filename nebulae.c str());
nebula current nebula;

nebulae file � current nebula;
while (nebulae file) {
〈Create nebula label 52 〉
nebulae.push back(current nebula);
nebulae file � current nebula;

}
}

32 NEBULAE PP3 (Version 1.3) §52

52. In order to create a LATEX-ready label, I first choose which catalog to use. It is from the Messier, the
NGC, and the IC catalogue the first in which the nebula appears, i. e. the first non-zero catalogue number.
The catalogue abbreviation itself is stored in catalog, whereas the stringstream number contains the number
within that catalogue. I just concatenate both to the label.

〈Create nebula label 52 〉 ≡
string catalogue;
stringstream number;

if (current nebula.messier > 0) {
catalogue = "\\Messier{";
number � current nebula.messier;

}
else if (current nebula.ngc > 0) {

catalogue = "\\NGC{";
number � current nebula.ngc;

}
else if (current nebula.ic > 0) {

catalogue = "\\IC{";
number � current nebula.ic;

}
else throw string("Invalid catalogue: \"") + catalogue + ’"’;
current nebula.label = catalogue + number.str() + ’}’;

This code is used in section 51.

53. Constellation boundaries. They are stored in an external file called constborders.dat.
Is is very convenient to have a special data type for a point in the program that has created

constborders.dat. In this program the advantage is not so big but it’s sensible to use the same data
structures here.

struct point {
double x, y;

point(const double x, const double y)
: x(x), y(y) { }
point()
: x(0.0), y(0.0) { }

};

54. An object of type boundary contains one stright line of a constellation boundary. This consists of
the two endpoints which come from the original boundary catalog by Delporte of 1930, and zero or more
interpolated points calculated by Davenhall (1990). The interpolated points help to draw a curved line
where this is necessary.

Every line usually belongs to exactly two constellations (of course). They are stored in the field
constellations. FixMe: There are boundaries with only one owner. I don’t know how this can happen.

struct boundary {
vector〈point〉 points;
vector〈string〉 constellations;
bool belongs to constellation(const string constellation) const;

};
typedef vector〈boundary〉 boundaries list;

§55 PP3 (Version 1.3) CONSTELLATION BOUNDARIES 33

55. In this routine I use only the first three letters of the constellation abbreviation. The reason is that the
original catalog uses "SER1" and "SER2" for “Serpent Caput” and “Serpent Cauda”. However, I see them
as one constellation. Be aware that this routine expects the constellation abbreviation in uppercase.

bool boundary ::belongs to constellation(const string constellation) const
{

for (int i = 0; i < constellations.size(); i++)
if (constellations[i].substr(0, 3) ≡ constellation.substr(0, 3)) return true;

return false;
}

56. Of course I need to be able to read the boundaries from constborders.dat. The input stream is a text
stream of the following format. The set of celestial boundaries is stored as a set of elementary lines without
kinks.

1. Number of points (size1) in the line (int).
2. Repeated size1 times:

– rectascension of point in hours (double),
– declination of point in degrees (double).

3. Number of constellations (size2) touching this border line (int, should be be always 2, however it isn’t
with current data).

4. Repeated size2 times:
– All uppercase astronomical abbreviation of the constellation. It may distinguish between “SER1” and

“SER2” for Serpens Caput and Serpens Cauda.

All fields are separated by whitespace.

istream &operator�(istream &in, boundary &p)
{

int size;

in � size;
p.points.resize(size);
for (int i = 0; i < size; i++) in � p.points[i].x � p.points[i].y;
in � size;
p.constellations.resize(size);
for (int i = 0; i < size; i++) in � p.constellations[i];
return in;

}

57. Here I read a set of boundaries from a file. It’s simply a list of boundary’s.

void read constellation boundaries(boundaries list &boundaries)
{

ifstream boundaryfile(params.filename boundaries.c str());
boundary current boundary;

boundaryfile � current boundary;
while (boundaryfile) {

boundaries.push back(current boundary);
boundaryfile � current boundary;

}
}

34 CONSTELLATION BOUNDARIES PP3 (Version 1.3) §58

58. As a big exception to the other classes, I don’t derive boundary itself from view data, but its smaller
brother, boundary atom. In contrast to boundary, boundary atom only contains two points of the view
frame, between which a boundary line will be drawn. This is not totally accurate since boundary lines are
not totally straight which may cause problems at the poles. However, it should be good enough.

struct boundary atom : public view data {
point start, end;

boundary atom(point start, point end);

virtual double penalties with(const double left, const double right, const double top, const double
bottom, bool core = true) const;

};

59. The nice thing about boundary atom is that after it has been constructed, it’s finished. Nothing has
to be changed any more because all is known in the moment of construction.

Since boundary atoms are only created when they are visible, I can set in view = visible etc.

boundary atom ::boundary atom(point start, point end)
: start(start), end(end) {

x = (start.x + end.x)/2.0;
y = (start.y + end.y)/2.0;
radius = hypot(end.x − start.x, end.y − start.y)/2.0;
radius ∗= M_PI_2;
in view = visible;
with label = hidden;
skip = 0.0;

}

§60 PP3 (Version 1.3) CONSTELLATION BOUNDARIES 35

60. The full algorithm that is used here is described in the 〈Definition of line intersection() for intersection
of two lines 62 〉. Except for peculiar cases there should be exact two intersections altogether, which means
that it’s the same as with constellation lines.

Objects of this type are created in 〈Create a boundary atom for the objects 111 〉.
〈Definition of line intersection() for intersection of two lines 62 〉
double boundary atom ::penalties with(const double left, const double right, const double top, const

double bottom, bool core) const
{

double intersection;
point r(end.x − start.x, end.y − start.y);
vector〈point〉 intersection points;

if (line intersection(left − start.x, r.x, start.y, r.y, bottom, top, intersection))
intersection points.push back(point(left, intersection));

if (line intersection(right − start.x, r.x, start.y, r.y, bottom, top, intersection))
intersection points.push back(point(right, intersection));

if (line intersection(top − start.y, r.y, start.x, r.x, left, right, intersection))
intersection points.push back(point(intersection, top));

if (line intersection(bottom − start.y, r.y, start.x, r.x, left, right, intersection))
intersection points.push back(point(intersection, bottom));

if (start.x > left ∧ start.x < right ∧ start.y > bottom ∧ start.y < top) intersection points.push back(start);
if (end.x > left ∧ end.x < right ∧ end.y > bottom ∧ end.y < top) intersection points.push back(end);
if (intersection points.empty()) return 0.0;
if (intersection points.size() 6= 2) {

cerr � "pp3: Funny " � intersection points.size() �
"−fold constellation boundary intersecrtion." � endl;

return 0.0;
}
const double length = hypot(intersection points[1].x − intersection points[0].x,

intersection points[1].y − intersection points[0].y);

return (core ? 8.0 ∗ params.penalties boundary : 0.5 ∗ params.penalties boundary rim)/72.27 ∗ 2.54 ∗ length;
}

36 CONSTELLATION LINES PP3 (Version 1.3) §61

61. Constellation lines. This is not about the boundaries, but about the connection lines between the
main stars of a given constellation. They are mere eye candy. I call their struct type “connections” to keep
the name unique and concise.

A connection consists of lines. The point coordinates are screen coordinates in centimetres. from and to
are the star star and the end star, given by their index in stars.

Notice that start and end aren’t defined before draw constellation lines() has been called, and the constel-
lation line is actually visible. Then they contain the screen coordinates of the start and the end point of the
line.

struct connection : public view data {
point start, end;
int from, to;

connection(const int from, const int to)
: from(from), to(to), start(), end() {

in view = visible;
with label = hidden;
skip = 0.0;

}
virtual double penalties with(const double left, const double right, const double top, const double

bottom, bool core = true) const;
};
typedef vector〈connection〉 connections list;

§62 PP3 (Version 1.3) CONSTELLATION LINES 37

62. In order to calculate penalties, we need some sort of overlap. Since there is no area overlap between
a line and a rectangle, I need the overlapping line length.

This is the first part of the algorithm. It is actually pretty simple, however hard to explain. We have two
lines to intersect: One edge of the label rectangle and the constellation line. The rectangle is given by left,
right, top, and bottom – as usual. The constellation line is given by their start point start and end point end.
Or, in parameterised form:

~x =
(

start.x
start.y

)
+ λ

(
end.x − start.x
end.y − start.y

)
, λ ∈ [0; 1].

The edge of the rectangle is given by (left edge as example)(
~x −

(
left
0

))
·
(

1
0

)
= 0

⇒ start.x + λ(end.x − start.x) = left
end.x−start.x 6=0⇔ λ =

left − start.x
end.x − start.x

with the boundary condition bottom < start.y + λ(end.y − start.y) =: intersection < top. With the abbrevia-
tions/assignments (also exemplarily for the ‘left’ case)

numerator = left − start.x,

denominator = end.x − start.x,

zero point = start y,

slope = end.y − start.y,

min = bottom, max = top

we get the following routine for finding out whether a certain label rectangle edge is intersected by the
constellation line or not:

〈Definition of line intersection() for intersection of two lines 62 〉 ≡
bool line intersection(double numerator, double denominator, double zero point, double slope, double

min, double max, double &intersection)
{

if (denominator ≡ 0) return false;

const double lambda = numerator/denominator;

intersection = zero point + lambda ∗ slope;
return lambda > 0.0 ∧ lambda < 1.0 ∧ intersection > min ∧ intersection < max;

}
This code is cited in section 60.

This code is used in section 60.

38 CONSTELLATION LINES PP3 (Version 1.3) §63

63. Now for the second part of the intersection algorithm. Here I apply the preceding routing on all four
label edges. I return an overlap as the penalty value, however I pretend that the line has a width of 8 pt.
For an overlap with the rim, it’s only 0.5 pt.

double connection ::penalties with(const double left, const double right, const double top, const double
bottom, bool core) const

{
double intersection;
point r(end.x − start.x, end.y − start.y);
vector〈point〉 intersection points;

if (line intersection(left − start.x, r.x, start.y, r.y, bottom, top, intersection))
intersection points.push back(point(left, intersection));

if (line intersection(right − start.x, r.x, start.y, r.y, bottom, top, intersection))
intersection points.push back(point(right, intersection));

if (line intersection(top − start.y, r.y, start.x, r.x, left, right, intersection))
intersection points.push back(point(intersection, top));

if (line intersection(bottom − start.y, r.y, start.x, r.x, left, right, intersection))
intersection points.push back(point(intersection, bottom));

if (start.x > left ∧ start.x < right ∧ start.y > bottom ∧ start.y < top) intersection points.push back(start);
if (end.x > left ∧ end.x < right ∧ end.y > bottom ∧ end.y < top) intersection points.push back(end);
if (intersection points.empty()) return 0.0;
if (intersection points.size() 6= 2) {

cerr � "pp3: Funny " � intersection points.size() �
"−fold constellation line intersecrtion." � endl;

return 0.0;
}
const double length = hypot(intersection points[1].x − intersection points[0].x,

intersection points[1].y − intersection points[0].y);

return (core ? 8.0 ∗ params.penalties cline : 0.5 ∗ params.penalties cline rim)/72.27 ∗ 2.54 ∗ length;
}

§64 PP3 (Version 1.3) CONSTELLATION LINES 39

64. I must be able to read a file which contains such data. Here, too, the text file format is very simple:
It’s a list of constellation line paths separated by ‘;’. A star name must be of the form

Constellation Flamsteed number

or

HD Henry-Draper Catalogue number

where Constellation must be given as an all uppercase three letter abbreviation. For example, ORI 19 is α Ori
(Rigel).

The hash sign ‘#’ introduces comments that are ignored till end of line, however they mustn’t occur
within a star.

void read constellation lines(connections list &connections, const stars list &stars)
{

ifstream file(params.filename lines.c str());
string from catalogue name, to catalogue name;
int from catalogue index = 0, to catalogue index = 0;

file � to catalogue name;
while (file) {

if (to catalogue name[0] ≡ ’#’) { /∗ skip comment ∗/
string dummy;

getline(file, dummy);
}
else if (to catalogue name ≡ ";") /∗ start a new path ∗/

from catalogue index = 0;
else {

file � to catalogue index;
if (from catalogue index > 0 ∧ to catalogue index > 0) {
〈Create one connection 65 〉

}
from catalogue name = to catalogue name;
from catalogue index = to catalogue index;

}
file � to catalogue name;

}
}

40 CONSTELLATION LINES PP3 (Version 1.3) §65

65. In the loop I try to find the index within stars of the ‘from’ star and the ‘to’ star.

〈Create one connection 65 〉 ≡
int from index = −1, to index = −1;

for (int i = 0; i < stars.size(); i++) {
〈Test whether stars[i] is the ‘from’ star 66 〉
〈Test whether stars[i] is the ‘to’ star 67 〉

}
if (from index ≡ −1 ∨ to index ≡ −1) {

stringstream error message;

error message � "Unrecognised star in constellation lines: ";
if (from index ≡ 0) error message � from catalogue name � ’ ’ � from catalogue index;
else error message � to catalogue name � ’ ’ � to catalogue index;
throw error message.str();

}
connections.push back(connection(from index, to index));

This code is used in section 64.

66. Here I test whether the current star in the loop is the ‘from’ star. Of course only if I haven’t found it
already (from index ≡ 0). If apparently both stars have been found already, I leave the loop immediately.

〈Test whether stars[i] is the ‘from’ star 66 〉 ≡
if (from index ≡ −1)

if (from catalogue name ≡ "HD") {
if (stars[i].hd ≡ from catalogue index) from index = i;

}
else {

if (from catalogue name ≡ stars[i].constellation)
if (stars[i].flamsteed ≡ from catalogue index) from index = i;

}
else if (to index 6= −1) break;

This code is cited in section 67.

This code is used in section 65.

67. Perfectly analogous to 〈Test whether stars[i] is the ‘from’ star 66 〉.
〈Test whether stars[i] is the ‘to’ star 67 〉 ≡

if (to index ≡ −1)
if (to catalogue name ≡ "HD") {

if (stars[i].hd ≡ to catalogue index) to index = i;
}
else {

if (to catalogue name ≡ stars[i].constellation)
if (stars[i].flamsteed ≡ to catalogue index) to index = i;

}
else if (from index 6= −1) break;

This code is used in section 65.

§68 PP3 (Version 1.3) THE MILKY WAY 41

68. The Milky Way. The file is a text file as usual with the following structure, everything separated by
whitespace:

1. The maximal (= equatorial) diagonal half distance of two pixels in degrees (double). This value is used
as the radius for the milky way ‘pixels’. Of course it must be the minimal radius for which there are no
gaps between the pixels.

2. The pixels themselves with two doubles and one int each:
– The rectascension in hours.
– The declination in degrees.
– The grey value of the pixel from 1 to 255. Zero is not used because zero-value pixels are not included

into the data file anyway.
In PP3’s standard distribution, this file was produced with the helper program milkydigest.cc, and the

original Milky Way bitmap was photographed and compiled by Axel Mellinger.
pixels is a vector〈vector〈point〉〉. The outer (first) index is the grey value, and for every grey value there is

an inner vector (second index) with a list of all points (rectascension, declination) that have this value. This
construction makes the drawing in Ghostview looking nice, but more importantly it reduces the number of
colour change commands in the LATEX file. Unfortunately this doesn’t reduce pool size usage.

〈Reading the milkyway into pixels 68 〉 ≡
ifstream file(params.filename milkyway.c str());
double radius;

file � radius;

double rectascension, declination, x, y;
int pixel;
const double cm per grad = 1.0/(mytransform.get rad per cm() ∗ 180.0/M_PI);

radius ∗= cm per grad/2.54 ∗ 72.27;
file � rectascension � declination � pixel;
while (file) {

if (mytransform.polar projection(rectascension, declination, x, y)) pixels[pixel].push back(point(x, y));
file � rectascension � declination � pixel;

}
This code is cited in section 114.

This code is used in section 114.

http://home.arcor-online.de/axel.mellinger/

42 COLOUR PP3 (Version 1.3) §69

69. Colour. It’s very convenient to have a unified data structure for all colours that appear in this
program. Its internal structure is trivial, and I only support the RGB colour model. The only complicated
thing is name here. I need it because of PSTricks’ way to activate colours: They must get names first. I could
get rid of it if I called all colours e. g. “tempcolor” or “dummycolor” and activated them at once. But this is
not necessary.

〈Define color data structure 69 〉 ≡
struct color {

double red, green, blue;
string name;

color(string name, double red, double green, double blue)
: red(red), green(green), blue(blue), name(name) { }
color(double red, double green, double blue)
: red(red), green(green), blue(blue), name() { }
void set(ostream &out) const;

};
This code is used in section 8.

70. This routine is used when the name of the colour is not necessary, because it’s only needed locally.
This is the case for text labels and the Milky Way dots.

void color ::set(ostream &out) const
{

out � "\\newrgbcolor{dummycolor}{" � red � ’ ’ � green � ’ ’ � blue �
"}\\dummycolor\n \\psset{linecolor=dummycolor}%\n";

}

71. Both output and input of colors is asymmetric: When I read them I assume that I do it from an input
script. Then it’s a mere sequence of the three colour values.

istream &operator�(istream &in, color &c)
{

in � c.red � c.green � c.blue;
if (¬in
∨ c.red < 0.0 ∨ c.red > 1.0
∨ c.green < 0.0 ∨ c.green > 1.0
∨ c.blue < 0.0 ∨ c.blue > 1.0) throw string("Invalid RGB values in input script");
return in;

}

72. But when I write them, I assume that I do it into a LATEX file with PSTricks package activated. Then I
deploy a complete \newrgbcolor command.

ostream &operator�(ostream &out, const color &c)
{

if (c.name.empty()) throw string("Cannot write unnamed color to stream");
out � "\\newrgbcolor{" � c.name � "}{" � c.red � ’ ’ � c.green � ’ ’ � c.blue � "}%\n";
return out;

}

§73 PP3 (Version 1.3) COLOUR 43

73. This routine is hitherto only used when drawing the milky way. It helps to find a colour between
the two extremes c1 and c2. The value of x is always between 0 and 1 and denotes the point on the way
between c1 and c1 in the RGB colour space where the new colour should be. I interpolate linearly. In order
to create a new colour object, I need a new name for it, too.

color interpolate colors(const double x, const color c1, const color c2, const string new name = "")
{

if (x < 0.0 ∨ x > 1.0) throw string("Invalid x for color interpolation");

const double y = 1.0 − x;

return color(new name, y ∗ c1.red + x ∗ c2.red, y ∗ c1.green + x ∗ c2.green, y ∗ c1.blue + x ∗ c2.blue);
}

44 DRAWING THE CHART PP3 (Version 1.3) §74

74. Drawing the chart. This is done in two steps. First the lines and the celestial objects are printed.
During this phase a lot of labels may accumulate. They cannot be drawn at that phase, because the
arrangement with minimal overlaps can only be calculated when all are known.

Therefore I have to fill a container called objects which contains elements of type view data. The part of
each star or nebula or whatever that is view data is appended to objects, if and only if the object is visible
in the view frame. The typical command for that is

objects.push back(&stars[i]);

(here for stars). Please notice that it is not important whether or not the respective object bears a label. Its
data is needed in any case.

In the second phase I arrange and print the labels.

75. Coordinate transformations. They are done by the class transformation. width and height contain
the view frame dimensions in centimetres. rad per cm is the resolution.

The 3 × 3 matrices a and a unscaled are rotation matrices for the transformation in cartesian space from
the equatorial system into the azimuthal system, where the center of the view frame is the z axis. While
a unscaled refers to a celestial sphere with radius 1, a contains the additional scaling for the actual centime-
tres on the paper.

class transformation {
double width, height, rad per cm;
double a[3][3], a unscaled[3][3];
inline double stretch factor(double z) const;

public: transformation(const double rectascension, const double declination, const double width, const
double height, const double grad per cm);

bool polar projection(const double rectascension, const double declination, double &x, double &y)
const;

double get rad per cm() const { return rad per cm; }
};

§76 PP3 (Version 1.3) COORDINATE TRANSFORMATIONS 45

76. Starting point is the parallel projection of a celestial unit sphere on the x-y plane. This projection looks
like a sky globus seen from far away with a strong zoom objective.

It is the starting point because it simply is a necessary intermediate step: All celestial positions given in
polar coordinates (rectascension, declination) must be transformed to cartesian coordinates in order to apply
a rotation on them for having the center of the view frame in the center of the coordinate system. From
there it’s a trivial step to the parallel projection.

But it squeezes the rim areas too much, which I don’t like.
By stretch I mean the radial stretch factor that should relieve this distortion. If stretch was 1.0, we would

get the mentioned parallel projection.
Therefore I stretch the plot here so that this effect is minimised. The result is the equidistant azimuthal

projection that can be described best if you imagine a plot with its center exactly on the north pole: All
circles of equal declination have then the same distance from each other. So the plot keeps its circular
form. The radial scale is constant everywhere and equal to grad per cm. Perpendicular to that, the scale is
decreasing from grad per cm (center) to 2/π · grad per cm (border). The exact relation is

scale‖ = grad per cm,

scale⊥ = grad per cm · r
arccos

√
1 − r2

, and thus

stretch =
arccos

√
1 − r2

r
. (1)

r is simply the distance from the center of the plot and it is 1 on the border. But I don’t have r, I have z. I
could to the substitution r =

√
1 − z2 leading to a very badly converging Taylor series, but much better is

z̃ = 1 − z and to use a Taylor series of

stretch =
arccos(1 − z̃)√

1 − (1 − z̃)2
.

Maple V says

stretch = 1 + 1/3 z̃ + 2/15 z̃2 +
2

35
z̃3 +

8
315

z̃4 +
8

693
z̃5 +O(z̃11/2).

This is good enough (error less than 1 %). There are two alternatives:

1. Use the Tayor expansion of (1) directly, because this expansion converges very quickly, especially for the
center-near regions. This would mean to calculate r(z) for every point, but this shouldn’t be too costly.

2. Transform back in spherical coordinates, re-interpret them as planar polar coordinates and transform
them to planar cartesian. Probably too difficult.

Why not calculating (1) (maybe with a subsitution) directly without series expansion? First, it may be
too costly. But secondly, I don’t like that in the particularly interesting region close to the center of the
view frame both numerator and denominator get close to 0, and eventually they do reach it. Maybe I’m
paranoid, but I don’t like that.

inline double transformation ::stretch factor(const double z) const
{

const double z̃ = 1.0 − z;

return 1.0 + z̃ ∗ (1.0/3.0 + z̃ ∗ (2.0/15.0 + z̃ ∗ (2.0/35.0 + z̃ ∗ (8.0/315.0 + z̃ ∗ (8.0/693.0)))));
}

46 COORDINATE TRANSFORMATIONS PP3 (Version 1.3) §77

77. This is not only the constructor for transformation, it is also the initialiser for the whole trans-
formation. As much work as possible is this routine, in order to keep calculations easy in the function
polar projection() which will be called hundreds if not thousands of times.

rectascension is given in hours, together with declination it’s the center of the desired view frame. width
and height give its dimensions in centimetres, grad per cm is the resulting resolution in the center.

a unscaled =

 sin ϕ cos ϕ 0
cos ϕ cos α − sin ϕ cos α sin α
− cos ϕ sin α sin ϕ sin α cos α

 .

transformation :: transformation(const double rectascension, const double declination, const double
width, const double height, const double grad per cm)

{
const double phi = −(rectascension + 12) ∗ 15.0 ∗ M_PI/180.0;
const double delta = declination ∗ M_PI/180.0;
const double alpha = −delta + M_PI_2;

rad per cm = grad per cm ∗ M_PI/180.0;
a unscaled[0][0] = sin(phi);
a unscaled[0][1] = cos(phi);
a unscaled[0][2] = 0.0;
a unscaled[1][0] = cos(phi) ∗ cos(alpha);
a unscaled[1][1] = −sin(phi) ∗ cos(alpha);
a unscaled[1][2] = sin(alpha);
a unscaled[2][0] = −cos(phi) ∗ sin(alpha);
a unscaled[2][1] = sin(phi) ∗ sin(alpha);
a unscaled[2][2] = cos(alpha);
for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++) a[i][j] = a unscaled[i][j]/rad per cm;
transformation ::width = width;
transformation ::height = height;

}

§78 PP3 (Version 1.3) COORDINATE TRANSFORMATIONS 47

78. Here I transform the equatorial position (rectascension, declination) to the cartesian position (x, y). The
resulting cartesian positions represents an azimuthal equidistant projection with the center of the view
frame (see rectascension and declination in the constructor of transformation).

It returns true if the resulting point is within the view frame, otherwise false.

bool transformation ::polar projection(const double rectascension, const double declination, double
&x, double &y) const

{
const double phi = rectascension ∗ 15.0 ∗ M_PI/180.0;
const double delta = declination ∗ M_PI/180.0;
const double cos delta = cos(delta);
const double x0 = cos delta ∗ cos(phi);
const double y0 = cos delta ∗ sin(phi);
const double z0 = sin(delta);
const double z1 = a unscaled[2][0] ∗ x0 + a unscaled[2][1] ∗ y0 + a unscaled[2][2] ∗ z0;

if (z1 < −DBL_EPSILON) return false;

const double stretch = stretch factor(z1);
const double x1 = a[0][0] ∗ x0 + a[0][1] ∗ y0;
const double y1 = a[1][0] ∗ x0 + a[1][1] ∗ y0 + a[1][2] ∗ z0;

x = x1 ∗ stretch + width/2.0;
y = y1 ∗ stretch + height/2.0;
if (x < 0.0 ∨ x > width ∨ y < 0.0 ∨ y > height) return false;
return true;

}

79. Label organisation. Without labels, star charts are not very useful. But labels mustn’t overlap,
and they should not overlap with other chart elements such as star circles or nebula circles. Here I try to
develop a simple algorithm that is able to avoid most of these problems. There are two main routines here:
arrange labels() and print labels().

arrange labels() modifies the label angle field in each celestial object in order to avoid any overlap with
other objects, namely other labels, stars, or nebulae. It does so by testing all eight values for label angle and
calculating a penalty value for each of them. This penalty is

penalty = overlaplabels + overlapobjects + penaltylines.

print labels() actually generates the LATEX code for printing them.

48 LABEL ORGANISATION PP3 (Version 1.3) §80

80. First the routine that actually calculates the overlap. It simply finds the common rectangular area in
squared centimetres. Both rectangles are given by their boundaries, left1, right1, top1, bottom1 enclose the
first rectangle, left2, right2, top2, bottom2 the second.

double calculate overlap(double left1, double right1, double top1, double bottom1, double left2, double
right2, double top2, double bottom2)

{
const double overlap left = fmax(left1, left2);
const double overlap right = fmin(right1, right2);
const double overlap top = fmin(top1, top2);
const double overlap bottom = fmax(bottom1, bottom2);
const double overlap x = fdim(overlap right, overlap left);
const double overlap y = fdim(overlap top, overlap bottom);

return overlap x ∗ overlap y;
}

81. Nor for a structure with the real dimensions in centimetres of all possible labels. They are read from
the file labeldims.dat and stored in a dimensions list.

struct dimension {
double width, height, depth;

dimension()
: width(0.0), height(0.0), depth(0.0) { }
dimension(const dimension &d)
: width(d.width), height(d.height), depth(d.depth) { }

};
typedef map〈string, dimension〉 dimensions list;

§82 PP3 (Version 1.3) LABEL ORGANISATION 49

82. Now we re-arrange the labels, namely objects[i].with label for all i. For efficiency, I first find all
neighbours of the on-object and do all the following work only with them. In the inner k-loop I test all
possible label angles and calculate their penalty.

If a label leaps out of the view frame, this adds to penalty the gigantic value of 10000.0.

〈 create preamble() for writing the LATEX preamble 120 〉
〈Helping routines for nebulae labels 88 〉
void arrange labels(objects list &objects, dimensions list &dimensions)
{

objects list vicinity;

〈 Set label dimensions 87 〉
for (int i = 0; i < objects.size(); i++) {

vicinity.clear();
if (objects[i]~ in view ≡ visible ∧ objects[i]~with label ≡ visible ∧ ¬objects[i]~ label arranged) {
〈 Find objects in vicinity of objects[i] 83 〉
double best penalty = DBL_MAX;
int best angle = 0;

for (int k = 0; k < 8; k++) {
objects[i]~ label angle = k;

double on object left, on object right, on object top, on object bottom;

objects[i]~get label boundaries(on object left, on object right, on object top, on object bottom);

double penalty = 0.0;
double rim width = 2.0 ∗ objects[i]~skip;

for (int j = 0; j < vicinity.size(); j++) {
penalty += vicinity[j]~penalties with(on object left, on object right, on object top, on object bottom)+

vicinity[j]~penalties with(on object left − rim width, on object right + rim width,
on object top + rim width, on object bottom − rim width, false) ∗ params.penalties rim;

}
if (on object left < 0.0 ∨ on object bottom < 0.0 ∨ on object right >

params.view frame width ∨ on object top > params.view frame height)
penalty += 10000.0;

if (penalty < best penalty) {
best penalty = penalty;
best angle = k;

}
}
if (¬objects[i]~ label.empty())

if (best penalty < 0.4 ∗ params.penalties threshold ∗ objects[i]~ label height ∗ objects[i]~ label width) {
objects[i]~ label angle = best angle;
objects[i]~ label arranged = true;

#ifdef DEBUG

stringstream penalty;

penalty.precision(2);
penalty � " " � best penalty � " (" � best penalty/(objects[i]~ label height ∗

objects[i]~ label width) ∗ 100 � "%)"; /∗ objects[i]~ label += penalty.str(); ∗/
cerr � "pp3DEBUG: Object " � objects[i]~ label � ’ ’;

const star ∗s = dynamic cast〈star ∗〉(objects[i]);

50 LABEL ORGANISATION PP3 (Version 1.3) §82

if (s) cerr � s~constellation;
cerr � " has penalty of" � penalty.str() � endl;

#endif
}
else {

objects[i]~with label = hidden;
objects[i]~ label arranged = true;

}
}

}
}

83. All objects in the vicinity of objects[i] eventually end up in the vector vicinity. Here I fill this structure.
I use a very rough guess for finding the neighbours, so there will probably be too many of them, but it
makes calculation much easier.

The practical thing is that neighbouring objects are ordered in increasing brightness in star data file,
which means that lables of bright stars are arranged first, and labels of fainter stars must cope with these
positions.

Of course, it’s guaranteed that objects[i] is not part of its vicinity.

〈 Find objects in vicinity of objects[i] 83 〉 ≡
const double on object scope = objects[i]~scope();

for (int j = 0; j < objects.size(); j++) {
if (i 6= j ∧ objects[j]~ in view ≡ visible) {

const double distance = hypot(objects[i]~x − objects[j]~x, objects[i]~y − objects[j]~y);

if (distance < on object scope + objects[j]~scope() ∧ 〈Condition to exclude double stars and such 84 〉)
vicinity.push back(objects[j]);

}
}

This code is cited in section 39.

This code is used in section 82.

84. 〈Condition to exclude double stars and such 84 〉 ≡
(distance > objects[j]~skip ∨ (objects[j]~with label ≡ visible ∧ ¬objects[j]~ label.empty()))

This code is used in section 83.

§85 PP3 (Version 1.3) LABEL ORGANISATION 51

85. Finally I print out all labels by generation LATEX code from any of them. I do that by calculating the
coordinates in centimetres of the bottom left corner of the label box, and placing the TEX box there. This TEX
box lies within another one with zero dimensions in order to keep the point of origin (bottom left of the
view frame) intact.

void print labels(const objects list &objects)
{

for (int i = 0; i < objects.size(); i++)
if (objects[i]~ in view ≡ visible ∧ objects[i]~with label ≡ visible ∧ objects[i]~ label arranged) {

double left, right, top, bottom;

objects[i]~get label boundaries(left, right, top, bottom);
if (left < 0.0 ∨ bottom < 0.0 ∨ right > params.view frame width ∨ top > params.view frame height)

continue;
objects[i]~ label color.set(OUT);
OUT � "\\hbox to 0pt{";
OUT � "\\hskip" � left � "cm";
OUT � "\\vbox to 0pt{\\vss\n \\hbox{\\Label{";
OUT � objects[i]~ label;
OUT � "}}\\vskip" � bottom � "cm";
OUT � "\\hrule height 0pt}\\hss}%\n";

#ifdef DEBUG
OUT � "\\psframe[linewidth=0.1pt](" � left � ’,’ � bottom � ")(" � right � ’,’ �

bottom + objects[i]~ label depth � ")%\n";
OUT � "\\psframe[linewidth=0.3pt](" � left � ’,’ � bottom � ")(" � right � ’,’ �

top � ")%\n";
#endif

}
}

86. Here I read label dimensions from a text file. The format is very simple:

1. The LATEX representation of the label on a line of its own.
2. In the following line, width, height, and depth of the label in centimetres (both double), separated by

whitespace.

This is repeated for every data record.

void read label dimensions(dimensions list &dimensions)
{

ifstream file(params.filename dimensions.c str());
string name, dummy;

getline(file, name);
while (file) {

file � dimensions[name].width � dimensions[name].height � dimensions[name].depth;
getline(file, dummy); /∗ Read the ’\n’ ∗/
getline(file, name);

}
}

52 DETERMINING LABEL DIMENSIONS PP3 (Version 1.3) §87

87. Determining label dimensions. Here I go through all objects and set the label width, label height, and
label depth which have been zero so far. It may happen that a label is not found (possibly because dimensions
is totally empty because no label dimensions file could be found). In this case I call recalculate dimensions()
to get all labels recalculated via an extra LATEX run.

dimensions recalculated is true if recalculate dimensions() has been called and thus one can assume that all
needed labels are now available. It is merely to remove unnecessary tests and make the procedure faster.

The throw command should never happen. It means an internal error.

〈 Set label dimensions 87 〉 ≡
bool dimensions recalculated = false;

for (int i = 0; i < objects.size(); i++) {
view data ∗current object = objects[i];

if (current object~with label ≡ visible) {
if (¬dimensions recalculated ∧ dimensions.find(current object~ label) ≡ dimensions.end()) {

recalculate dimensions(dimensions, objects);
dimensions recalculated = true;
if (dimensions.find(current object~ label) ≡ dimensions.end())

throw string("Update of label dimensions file failed: \"") + current object~ label +
"\" not found";

}
current object~ label width = dimensions[current object~ label].width;
current object~ label height = dimensions[current object~ label].height;
current object~ label depth = dimensions[current object~ label].depth;

}
}

This code is used in section 82.

§88 PP3 (Version 1.3) DETERMINING LABEL DIMENSIONS 53

88. When PP3 is started it reads a file usually called labeldimens.dat in order to know width, height,
and depth (in centimetres) of all labels. This is vital for the penalty (i. e. overlap) calculations. But it may
be that a label that you want to include can’t be found in this file, or you have deleted it because you’ve
changed the LATEX preamble of the output (i. e. the fonts). In these cases PP3 automatically creates a new
one. It is then used in the following runs to save time.

Here I do this. First I store all label names (not only the missing!) in required names. I assure that every
label occurs only once.

Then I create a temp file which is a LATEX file that – if sent through LATEX – is able to create another
temporary file called raw labels file. This is read and stored directly in dimensions (where it belongs to
naturally). At the same time a new, updated cooked labels file (aka labeldimens.dat) is created.

By the way, I am forced to use two temporary files. It is impossible to let the LATEX file create directly
the file labeldimens.dat. The reason are the label string: They may contain characters that have a special
meaning in LATEX, and I’m unable to avoid any tampering.

〈Helping routines for nebulae labels 88 〉 ≡
void recalculate dimensions(dimensions list &dimensions, const objects list &objects)
{

list〈string〉 required names;

for (int i = 0; i < objects.size(); i++) {
const string current name = objects[i]~ label;

if (¬current name.empty()) required names.push back(current name);
}
required names.unique();

ofstream temp file("pp3temp.tex");

create preamble(temp file);
temp file � "\n\\begin{document}\n" � "\\newwrite\\labelsfile\n" �

"\\catcode‘_=11 % for underscores in the filename\n" �
"\\immediate\\openout\\labelsfile=pp3temp.dat\n" � "\\catcode‘_=8\n";

list〈string〉 ::const iteratorp = required names.begin();
while (p 6= required names.end()) temp file � "\\setbox0 = \\hbox{" � ∗(p++) �

"}\n \\immediate\\write\\labelsfile{""\\the\\wd0s \\the\\ht0s \\the\\dp0s}\n";
temp file � "\\immediate\\closeout\\labelsfile\n\\end{document}\n";
temp file.close();

string commandline("latex pp3temp");

if (params.filename output.empty()) commandline += " > pp3dump.log";
if (system(commandline.c str()) 6= 0)

throw string("Label dimensions calculations: LaTeX call failed: ") + commandline;

ifstream raw labels file("pp3temp.dat");
ofstream cooked labels file("labeldimens.dat");

cooked labels file.setf (ios ::fixed);
cooked labels file.precision(5);
p = required names.begin();
while (p 6= required names.end()) {

string current width, current height, current depth;
string current name;

current name = ∗(p++);
raw labels file � current width � current height � current depth;
current width.substr(0, current width.length() − 3);

54 DETERMINING LABEL DIMENSIONS PP3 (Version 1.3) §88

current height.substr(0, current height.length() − 3);
current depth.substr(0, current depth.length() − 3);
dimensions[current name].width = strtod(current width.c str(), 0)/72.27 ∗ 2.54;
dimensions[current name].height = strtod(current height.c str(), 0)/72.27 ∗ 2.54;
dimensions[current name].depth = strtod(current depth.c str(), 0)/72.27 ∗ 2.54;
dimensions[current name].height += dimensions[current name].depth;
cooked labels file � current name � ’\n’ � dimensions[current name].width � ’ ’ �

dimensions[current name].height � ’ ’ � dimensions[current name].depth � ’\n’;
}

}
This code is used in section 82.

89. User labels. The user should be able to insert arbitaray text into the chart. The code for this is
provided here. The data type of them, text, is of course a classical derivative of view data. It only holds
the celestial coordinates and the text (LATEX) string of the label.

struct text : public view data {
string contents;
double rectascension, declination;

text(string t, double r, double d, color c, int angle, bool on baseline);
};
typedef list〈text〉 texts list;

90. In the constructor I modify the values of some view data elements, because a text is a special label.
For example it mustn’t be arranged, because it is already. And it gets another colour (if wanted).

text :: text(string t, double r, double d, color c, int angle, bool on baseline)
: contents(t), rectascension(r), declination(d) {

label = string("\\TextLabel{") + t + ’}’;
with label = visible;
label angle = angle;
view data ::on baseline = on baseline;
label arranged = true;
label color = c;
radius = skip = 0.0;

}

§91 PP3 (Version 1.3) USER LABELS 55

91. This routine is called draw . . . due to its analogy to the other drawing function. But curiously enough,
I don’t draw anything here, because labels are drawn in print labels() and texts consists only of labels. I only
have to assure that I don’t include invisible labels.

void draw text labels(transformation &mytransform, texts list &texts, objects list &objects)
{

texts list :: iteratorp = texts.begin();
while (p 6= texts.end()) {

double x, y;

if (mytransform.polar projection(p~rectascension, p~declination, x, y)) {
p~ in view = visible;
p~x = x;
p~y = y;
objects.push back(&(∗p));

}
p++;

}
}

92. Flex labels. “Flex labels” are drawn along a path that needn’t (and usually isn’t) be a straight line.
Unfortunately, due to this, their dimensions are very difficult to predict and therefore they are not part of
the penalty algorithm – at least not in the current version.

Eventually PP3 could have many kinds of flexes, therefore there is a common (abstract) ancestor for
all of them called flex label. But at the moment I only implement the by far most important one, the
declination flex, see below.

Flexes are special also in another respect: They are read from the input script. This means that the
flexes list that contains all flexes (of all kinds) is filled during reading the input script. Therefore there is no
read flexes(), and no file format associated with it.

struct flex label : public view data {
double rectascension, declination;

flex label(string s, double r, double d, color c, int a, bool b);

virtual bool draw(const transformation &mytransform, dimensions list &dimensions, objects list
&objects) const = 0;

};

56 FLEX LABELS PP3 (Version 1.3) §93

93. Of course I need no extra label because a flex is a label of its own. So a flex only uses label and
label angle. The rest is unimportant because the label isn’t printed anyway because the coodrinates x and y
are invalid anyway and therefore printing will be rejected in print labels().

Actually on baseline is insignificant for flexes.

flex label ::flex label(string s, double r, double d, color c, int a, bool b)
: rectascension(r), declination(d) {

label color = c;
label = string("\\FlexLabel{") + s + ’}’;
label angle = a;
on baseline = b;
in view = visible;
with label = hidden;
label arranged = true;

}
typedef list〈flex label ∗〉 flexes list;

94. declination flex enables us to write a text along a path of constant declination. This looks very nice
on the chart.

struct declination flex : public flex label {
declination flex(string s, double r, double d, color c, int a, bool b)
: flex label(s, r, d, c, a, b) { }
virtual bool draw(const transformation &mytransform, dimensions list &dimensions, objects list

&objects) const;
virtual double penalties with(const double left, const double right, const double top, const double

bottom, bool core = true) const;
};

§95 PP3 (Version 1.3) FLEX LABELS 57

95. This is the main declination flex routine. I calculate the dimensions of the label in oder to find out
how long the path must be and how much it must be shifted vertically in order to get the desired angular
positioning. Both values can only be estimates. (For example, the scale is not constant on the map, so it
cannot work perfectly. However I try to assure that the path will be too long rather than too short.)

Then I calculate the coordinates of three points that form the path. Start point, end point, and one exactly
in between. Of course all have the same declination. lower is measured in em and denotes the amount
by which the whole text is shifted downwards. This is sub-optimal because it may affect letterspacing
disadvantageously.

Finally the three coordinate pairs and the label text are sent to the output in form of a PSTricks text path
command.

bool declination flex ::draw(const transformation &mytransform, dimensions list
&dimensions, objects list &objects) const

{
if (dimensions.find(label) ≡ dimensions.end()) recalculate dimensions(dimensions, objects);
if (dimensions.find(label) ≡ dimensions.end())

throw string("Update of label dimensions file failed: \"") + label + "\" not found";

const double label width = dimensions[label].width;
const double label height = dimensions[label].height;
const double rectascension halfwidth = label width ∗ mytransform.get rad per cm() ∗

180.0/M_PI/15.0/cos(declination ∗ M_PI/180.0)/2.0;
char justification;
double path point rectascension[3];

path point rectascension[0] = rectascension;
path point rectascension[1] = rectascension − rectascension halfwidth;
path point rectascension[2] = rectascension − 2.0 ∗ rectascension halfwidth;
switch (label angle) {
case 0: case 1: case 7: justification = ’l’;

break;
case 2: case 6: justification = ’c’;

for (int i = 0; i < 3; i++) path point rectascension[i] += rectascension halfwidth;
break;

case 3: case 4: case 5: justification = ’r’;
for (int i = 0; i < 3; i++) path point rectascension[i] += 2.0 ∗ rectascension halfwidth;
break;

}
double lower;

switch (label angle) {
case 0: case 4: lower = −0.4;

break;
case 1: case 2: case 3: lower = 0.0;

break;
case 5: case 6: case 7: lower = −0.8;

break;
}
double x[3], y[3];

for (int i = 0; i < 3; i++)
if (¬mytransform.polar projection(path point rectascension[i], declination, x[i], y[i])) return false;

label color.set(OUT);

58 FLEX LABELS PP3 (Version 1.3) §95

OUT � "\\FlexLabel{\\pstextpath[" � justification � "](0," � lower �
"em){\\pscurve[linestyle=none]%\n ";

for (int i = 0; i < 3; i++) OUT � ’(’ � x[i] � "cm," � y[i] � "cm)";
OUT � "}{\\dummycolor" � label � "}}%\n";
return true;

}

96. As I’ve already said, a flex is (at the moment) excluded from the penalty algorithm. This is realised
here: This routine always returns zero.

double declination flex ::penalties with(const double left, const double right, const double top, const
double bottom, bool core) const

{
return 0.0;

}

97. This is the drawing routine called from the main program. It goes through all flexes twice: First it only
fills objects. Then it actually draws the flexes. The reason is efficiency: This assures that all needed labels are
available before the first flex is about to be draw which may mean a reclaculation of the label dimensions.
If I realised this in one pass, the needed labels would occure over and over again, and every time it would
be necessary to recalculate the dimensions.

void draw flex labels(const transformation &mytransform, const flexes list &flexes, objects list
&objects, dimensions list &dimensions)

{
flexes list ::const iteratorp = flexes.begin();
while (p 6= flexes.end()) objects.push back(∗p++);
p = flexes.begin();
while (p 6= flexes.end()) (∗p++)~draw(mytransform, dimensions, objects);

}

§98 PP3 (Version 1.3) DRAWING STARS 59

98. Drawing stars. Stars are a little bit simpler than nebulae because they are mere disks. They are only
included if they have a certain minimal magnitude. The disk radius is calculated according to

radius =
√

mmin − m + radius2
min , if m < mmin ,

radius = mmin , otherwise.

The star gets a label by default only if it has a certain magnitude. This is even a little bit stricter than the
related condition above.

Then only the stellar colour has yet to be calculated, and it can be printed.

〈 create hs colour() for star colour determination 99 〉
void draw stars(const transformation &mytransform, stars list &stars, objects list &objects)
{

for (int i = 0; i < stars.size(); i++)
if (stars[i].in view 6= hidden ∧ stars[i].magnitude < params.faintest star magnitude) {

/∗ Effectively all stars of the BSC ∗/
if (mytransform.polar projection(stars[i].rectascension, stars[i].declination, stars[i].x, stars[i].y)) {

stars[i].in view = visible;

const double m dot = params.faintest star disk magnitude;
const double r min = params.minimal star radius/params.star scaling;

stars[i].radius = params.star scaling ∗ (stars[i].magnitude < m dot ?
sqrt((m dot − stars[i].magnitude)/300.0 + r min ∗ r min) : r min);

if (stars[i].with label ≡ undecided) stars[i].with label = (stars[i].magnitude <

params.faintest star with label magnitude ∧ ¬stars[i].name.empty()) ? visible : hidden;
if (params.colored stars) {
OUT � "\\newhsbcolor{starcolor}{";
create hs colour(stars[i].b v, stars[i].spectral class);
OUT � " 1}%\n";

}
else OUT � params.starcolor;
OUT � "\\pscircle*[linecolor=starcolor](" � stars[i].x � "," � stars[i].y � "){" �

stars[i].radius/2.54 ∗ 72.27 � "pt}%\n";
objects.push back(&stars[i]);

}
else stars[i].in view = hidden;

}
else stars[i].in view = stars[i].with label = hidden;

}

60 DRAWING STARS PP3 (Version 1.3) §99

99. I want to use the B−V magnitude for the colour of the star disks on the maps. Here I map the value
of the B−V magnitude to a colour in the HSB space. ‘HSB’ – ‘Hue, Saturation, Brightness’ (all three fom 0
to 1). Brightness is always 1, so only hue and saturation have to be calculated.

There are three intervals for B−V with the boundaries bv0, bv1, bv2, and bv3. bv0–bv1 is blue, bv1–bv2 is
white, and bv2–bv3 is red. On each boundary, the hue values hue0–hue3 respectively are valid. Inbetween I
interpolate linearly (rule of three).

〈 create hs colour() for star colour determination 99 〉 ≡
void create hs colour(double b v, string spectral class)
{

double hue, saturation;
const double bv0 = −0.1, bv1 = 0.001, bv2 = 0.62, bv3 = 1.7;
const double hue0 = 0.6, hue1 = 0.47, hue2 = 0.17, hue3 = 0.0;
const double min saturation = 0.0, max saturation = 0.2;

〈Handle missing B−V value 100 〉
if (b v < bv0) b v = bv0; /∗ cut off extreme values ∗/
if (b v > bv3) b v = bv3;
if (b v < bv1) { /∗ blue star ∗/

hue = (b v − bv0)/(bv1 − bv0) ∗ (hue1 − hue0) + hue0;
saturation = (b v − bv0)/(bv1 − bv0) ∗ (min saturation − max saturation) + max saturation;

}
else if (b v < bv2) { /∗ white star: constantly white. ∗/

hue = 0.3; /∗ could be anything ∗/
saturation = 0;

}
else { /∗ red star ∗/

hue = (b v − bv2)/(bv3 − bv2) ∗ (hue3 − hue2) + hue2;
saturation = (b v − bv2)/(bv3 − bv2) ∗ (max saturation − min saturation) + min saturation;

}
OUT � hue � ’ ’ � saturation;

}
This code is used in section 98.

§100 PP3 (Version 1.3) DRAWING STARS 61

100. Since there are some stars in the stellar catalogue without a B−V brightness, I need a fallback on the
spectral class. For such stars is b v = 99. In this routine I use the very first character in the string with the
spectral class for determining an estimated value for B−V. The values are averages of all stars in the BSC
with the respective spectral class.

〈Handle missing B−V value 100 〉 ≡
if (b v > 90.0) {

switch (spectral class[0]) {
case ’O’: b v = 0.0; break;
case ’B’: b v = −0.07; break;
case ’A’: b v = 0.11; break;
case ’F’: b v = 0.43; break;
case ’G’: b v = 0.89; break;
case ’K’: b v = 1.24; break;
case ’M’: b v = 1.62; break;
case ’N’: b v = 2.88; break;
case ’S’: b v = 1.84; break;
case ’C’: b v = 3.02; break;
default: b v = 0.0; break;
}

}
This code is used in section 99.

62 DRAWING NEBULAE PP3 (Version 1.3) §101

101. Drawing nebulae. Only nebulae with a certain minimal brightness are included, and all Messier
objects, but all of these get a label by default.

The first decision I have to make here is whether the nebula has all necessary data for drawing a neat
ellipsis that has the correct diameters and the correct angle. If this is not anvailable (horizontal angle = 720◦),
the nebula ellipsis is re-calculated so that

diameter xnew = diameter ynew and

diameter xnew · diameter ynew = diameter xold · diameter yold

(make the ellipsis a circle of the same area) which means

diameter xnew := diameter ynew :=
√

diameter xold · diameter yold.

The radius of the nebula is a rough estimate: It is simply the half of diameter x. If the nebula is too small, it
is printed as a minimal circle. If it’s large enough, it is printed in its (almost) full beauty, see 〈Draw nebula
shape 102 〉.

void draw nebulae(const transformation &mytransform, nebulae list &nebulae, objects list &objects)
{
OUT � "\\psset{linecolor=nebulacolor,linewidth=" � params.linewidth nebula �

"cm,linestyle=" � params.linestyle nebula � ",curvature=1 .5 −1}%\n";
for (int i = 0; i < nebulae.size(); i++)

if (nebulae[i].in view ≡ visible ∨ (nebulae[i].in view ≡ undecided ∧ (((nebulae[i].kind ≡ open cluster ∨
nebulae[i].kind ≡ globular cluster) ∧ nebulae[i].magnitude < params.faintest cluster magnitude) ∨

((nebulae[i].kind ≡ galaxy ∨ nebulae[i].kind ≡ reflection ∨ nebulae[i].kind ≡ emission) ∧
nebulae[i].magnitude < params.faintest diffuse nebula magnitude) ∨ nebulae[i].messier > 0))) {

if (mytransform.polar projection(nebulae[i].rectascension, nebulae[i].declination, nebulae[i].x,
nebulae[i].y)) {

nebulae[i].in view = visible;
if (nebulae[i].horizontal angle > 360.0)

nebulae[i].diameter x = nebulae[i].diameter y = sqrt(nebulae[i].diameter x ∗ nebulae[i].diameter y);
nebulae[i].radius = nebulae[i].diameter x/2.0/mytransform.get rad per cm() ∗ M_PI/180.0;
if (nebulae[i].with label 6= hidden) nebulae[i].with label = visible;
if (nebulae[i].radius > params.minimal nebula radius) {
〈Draw nebula shape 102 〉

}
else {

nebulae[i].radius = params.minimal nebula radius;
OUT � "\\pscircle(" � nebulae[i].x � "," � nebulae[i].y � "){" �

nebulae[i].radius/2.54 ∗ 72.27 � "pt}%\n";
}
objects.push back(&nebulae[i]);

}
else nebulae[i].in view = hidden;

}
else nebulae[i].in view = nebulae[i].with label = hidden;

}

§102 PP3 (Version 1.3) DRAWING NEBULAE 63

102. This is the core of draw nebula(). In order to draw the (almost) ellipsis, I define four reference points
at the vertexes of the ellipsis. In the loop they are then transformed to screen coordinates and printed.

Mathematically, the algorithm used here works only for infitesimally small nebulae on the equator. The
problem of “finding a point that is x degrees left from the current point with an angle of α degrees” is
actually much more difficult. This is also the reason for this special case nebulae[i].diameter x ≡ nebulae[i]
.diameter y. It shouldn’t be necessary, and at the rim of the view frame it’s even wrong due to the different
circular scale. FixMe: Improve this. (Via rotation matrices.)

〈Draw nebula shape 102 〉 ≡
if (nebulae[i].diameter x ≡ nebulae[i].diameter y)
OUT � "\\pscircle(" � nebulae[i].x � ’,’ � nebulae[i].y � "){" � nebulae[i].radius � "}%\n";

else {
double rectascension[4], declination[4];
const double r scale = 1.0/cos(nebulae[i].declination ∗ M_PI/180.0);
const double cos angle = cos(nebulae[i].horizontal angle ∗ M_PI/180.0);
const double sin angle = sin(nebulae[i].horizontal angle ∗ M_PI/180.0);
const double half x = nebulae[i].diameter x/2.0;
const double half y = nebulae[i].diameter y/2.0;

rectascension[0] = nebulae[i].rectascension − half x ∗ cos angle/15.0 ∗ r scale;
declination[0] = nebulae[i].declination − half x ∗ sin angle;
rectascension[1] = nebulae[i].rectascension + half y ∗ sin angle/15.0 ∗ r scale;
declination[1] = nebulae[i].declination − half y ∗ cos angle;
rectascension[2] = nebulae[i].rectascension + half x ∗ cos angle/15.0 ∗ r scale;
declination[2] = nebulae[i].declination + half x ∗ sin angle;
rectascension[3] = nebulae[i].rectascension − half y ∗ sin angle/15.0 ∗ r scale;
declination[3] = nebulae[i].declination + half y ∗ cos angle;
OUT � "\\psccurve";
for (int j = 0; j < 4; j++) {

double x, y;

mytransform.polar projection(rectascension[j], declination[j], x, y);
OUT � ’(’ � x � ’,’ � y � ’)’;

}
}
OUT � "\\relax\n";

This code is cited in section 101.

This code is used in section 101.

103. Grid and other curves. It’s boring to have only stars on the map. I want to have the usual
coordinate grid with rectascension and declination lines, plus the ecliptic and maybe the galactic equator,
plus the constellation borders and constellation lines. This is done here.

64 GRID AND OTHER CURVES PP3 (Version 1.3) §104

104. The first routine is basic for all the following: It helps to draw a smooth curve through the given
points. Actually it’s a mere code fragment that is used later several times, therefore it’s declared inline and
it has unfortunately many parameters.

rectascension and declination are the celestial coordinates of the point. i is the number of the scan point in
the current curve. Later it’ll be the loop variable. within curve is true if I’m actually drawing a curve, and
false if the current segment is not visible. steps is the number of i’s that I skip over before I deploy a curve
point. (I scan much more points than I actually draw, because the resulting curve is smoothed anyway so a
very high point density is not necessary.)

last x and last y simply contain the values of x and y from the last call, because I need them when I step
outwards of the view frame: Then I must draw a curve ending point at the last coordinates rather than the
current ones.

steps = 1 denotes the ending point of a curve.
FixMe: There is a very basic flaw here, namely that the curve directions in the endpoints may be rather

suboptimal. This is particularly annoying when drawing a circle-like shape. However, a solution is not
easy; so far the only help is to make the points denser.

inline void add curve point(const double rectascension, const double declination, const transformation
&transform, const int i, bool &within curve, const int steps)

{
static double last x, last y;
double x, y;

if (transform.polar projection(rectascension, declination, x, y)) {
if (¬within curve) { /∗ start a new one ∗/
OUT � "\\pscurve" � "(" � x � ’,’ � y � ")";
within curve = true;

}
else if (i % steps ≡ 0) OUT � "(" � x � ’,’ � y � ")";
if (i % (steps ∗ 4) ≡ 0 ∨ steps ≡ 1) OUT � "%\n"; /∗ line break every four coordinates ∗/

}
else if (within curve) { /∗ end the current curve ∗/
OUT � "(" � last x � ’,’ � last y � ")" � "\\relax\n";
within curve = false;

}
last x = x;
last y = y;

}

§105 PP3 (Version 1.3) GRID AND OTHER CURVES 65

105. This is the principal grid routine that is called from the main() function. scans per cm is the density of
tests whether we are within the view frame or not. By default, we scan once every millimetre. point distance
is given in degrees and it’s the distance between two actually drawn curve points.

scans per fullcircle is the number of scan points in one full arc. It is used in the following code for
determining the number of loop repetitions. In order to keep the meaning of all quantities, the grid creating
code should respect this variable. E. g., most declination circles are smaller than one full arc. Therefore they
mustn’t use the full value of scans per fullcircle.

steps and within curve should be clear from the routine add curve point(). steps is at least 2, because it
must be at least 1 anyway and “1” has a special meaning in add curve point: It denotes the end of a curve.
within curve must be reset to false if a new set of lines is to be drawn.

For a plot with closed lines (e. g. of one of the poles), you may set point distance to 0 and scans per cm to a
higher value, for avoiding a kink at the joint.

void create grid(const transformation transform, const double scans per cm = 10, const double
point distance = 5.0)

{
if (¬params.show grid ∧ ¬params.show ecliptic) return;

const double scans per fullcircle = scans per cm/transform.get rad per cm() ∗ 2.0 ∗ M_PI;
const int steps = int((point distance ∗ M_PI/180.0) ∗ (scans per fullcircle/(2.0 ∗ M_PI))) + 2;
bool within curve;

if (params.show grid) {
OUT � "\\psset{linestyle=" � params.linestyle grid � ",linecolor=gridcolor,linewidth=" �

params.linewidth grid � "cm}%\n";
〈Create grid lines for equal declination 106 〉
〈Create grid lines for equal rectascension 107 〉

}
if (params.show ecliptic) {
〈Draw the ecliptic 108 〉

}
}

106. As mentioned before, declination circles are smaller than the full circle of the celestial sphere. There-
fore I reduce the scans per fullcircle by cos(declination) in order to decrese the number of scan points. The
equator is drawn with a slightly bigger line width.

This strange construction with “i ≡ number of points ? 1 : steps” is necessary because the very last point
must be drawn.

〈Create grid lines for equal declination 106 〉 ≡
for (int declination = −80; declination ≤ 80; declination += 10) {

if (declination ≡ 0) OUT � "\\psset{linewidth=" � 2.0 ∗ params.linewidth grid � "cm}%\n";
within curve = false;

const int number of points = int(cos(declination ∗ M_PI/180.0) ∗ scans per fullcircle);

for (int i = 0; i ≤ number of points; i++) add curve point(double(i)/double(number of points) ∗ 24.0,
declination, transform, i, within curve, i ≡ number of points ? 1 : steps);

if (declination ≡ 0) OUT � "\\psset{linewidth=" � params.linewidth grid � "cm}%\n";
}

This code is used in section 105.

66 GRID AND OTHER CURVES PP3 (Version 1.3) §107

107. The only slightly interesting thing here is that I draw the lines of equal rectascension only from −80◦

to +80◦ of declination, because otherwise it gets too populated in the pole regions.

〈Create grid lines for equal rectascension 107 〉 ≡
const int number of points = int(scans per fullcircle/2.0);

for (int rectascension = 0; rectascension ≤ 23; rectascension++) {
within curve = false;
for (int i = 0; i ≤ number of points; i++)

add curve point(double(rectascension), double(i)/double(number of points) ∗ 160.0− 80.0, transform, i,
within curve, i ≡ number of points ? 1 : steps);

}
This code is used in section 105.

108. Unfortunately the naive approach for drawing the ecliptic,

declination = ε · sin(rectascension)

(with ε being the angle between equator and ecliptic) is wrong. So I have to take the equatorial declination
circle, transform it into cartesian coordinates, apply a simple rotation matrix for turning it into the ecliptical
circle, and transform it back into celestial coordinates. Fortunately the ecliptic lies very symmetrically, so
the resulting formulae are rather simple:

Being ϕ0 the right ascension angle (= rectascension · 15◦/h) of the point on the equator, its right ascension
ϕ and declination δ after becoming the ecliptic are

ϕ = arctan2
− sin ϕ0 cos ε

cos ϕ0

δ = arcsin(− sin ϕ0 sin ε).

arctan2 is the quadrant-aware version of arctan, because arctan only returns values between −π/2 and
+π/2.

〈Draw the ecliptic 108 〉 ≡
OUT � "\\psset{linestyle=" � params.linestyle ecliptic � ",linecolor=eclipticcolor," �

"linewidth=" � params.linewidth ecliptic � "cm}%\n";
{

const double epsilon = 23.44 ∗ M_PI/180.0;
const int number of points = int(scans per fullcircle);

within curve = false;
for (int i = 0; i ≤ number of points; i++) {

const double phi0 = double(i)/double(number of points) ∗ 2.0 ∗ M_PI;
const double m sin phi0 = −sin(phi0);
const double phi = atan2(m sin phi0 ∗ cos(epsilon), cos(phi0));
const double delta = asin(m sin phi0 ∗ sin(epsilon));

add curve point(phi ∗ 12.0/M_PI, delta ∗ 180.0/M_PI, transform, i, within curve,
i ≡ number of points ? 1 : steps);

}
}

This code is used in section 105.

109. Constellation boundaries. They are drawn at a quite early stage so that they are overprinted by
more interesting stuff.

§110 PP3 (Version 1.3) CONSTELLATION BOUNDARIES 67

110. This routine is a helper and is used in draw constellation boundaries(). It draws one boundary line b,
but only the part that is visible. For this in the first part of this routine, the container current line is filled
with all points of b that are actually visible, with their screen coordinates in centimetres.

If current line consists only of a start and an end point, a ‘\psline’ is created which is a straight line. I
cannot get a curvature from anywhere easily in this case. Otherwise it is a ‘\pscurve’ which means that we
go smoothly through all points.

I need this "[liftpen=2]" because eventually the \pscurve command may be part of a \pscustom

command and thus be part of a bigger path that forms – in terms of the Porstscript language – one united
path.2 In order to get crisp coners, the liftpen option is necessary.

void draw boundary line(const boundary &b, const transformation &transform, objects list &objects, bool
highlighted = false)

{
vector〈point〉 current line;

for (int j = 0; j < b.points.size(); j++) {
const double rectascension = b.points[j].x;
const double declination = b.points[j].y;
double x, y;

if (¬transform.polar projection(rectascension, declination, x, y)) continue;
current line.push back(point(x, y));

}
if (current line.size() ≥ 2) {

if (current line.size() ≡ 2) OUT � "\\psline";
else OUT � "\\pscurve";
OUT � "[liftpen=2]{c−c}";
for (int j = 0; j < current line.size(); j++) {
OUT � ’(’ � current line[j].x � ’,’ � current line[j].y � ’)’;
if (j % 4 ≡ 3) OUT � "%\n";
if (highlighted) 〈Create a boundary atom for the objects 111 〉

}
OUT � "\\relax\n";

}
}

111. This is the point where the boundary atoms are actually created. As one can see, it’s very simple.
I just draw a virtual line from the current point in the current path to the previous one. Unfortunately I
create new objects here on the heap that are never deleted. But it’s harmless nevertheless.

〈Create a boundary atom for the objects 111 〉 ≡
if (j > 0) objects.push back(new boundary atom(current line[j], current line[j − 1]));

This code is cited in section 60.

This code is used in section 110.

2 This means e. g. that a dashed line pattern won’t be broken at subpath junctions.

68 CONSTELLATION BOUNDARIES PP3 (Version 1.3) §112

112. This is the routine that is actually called from the main program. There are two possibilities: Either
the string constellation is empty or not. If not, the caller wants to highlight the given constellation. Then we
have to undertake a two step process:

(1) Draw all boundaries that do not belong to constellation.
(2) Draw all boundaries that enclose constellation in a hightlighted style and as one path via \pscustom.

If no constellation is given we simply draw all lines in boundaries in modus (1).

void draw boundaries(const transformation &mytransform, boundaries list &boundaries, objects list
&objects, string constellation = string(""))

{
OUT � "\\psset{linecolor=boundarycolor,linewidth=" � params.linewidth boundary � "cm," �

"linestyle=" � params.linestyle boundary � "}%\n";
if (¬constellation.empty()) {

for (int i = 0; i < boundaries.size(); i++)
if (¬boundaries[i].belongs to constellation(constellation))

draw boundary line(boundaries[i], mytransform, objects);
OUT � "\\psset{linecolor=hlboundarycolor,linewidth=" � params.linewidth boundary �

"cm," � "linestyle=" � params.linestyle hlboundary � "}%\n";
OUT � "\\pscustom{";
for (int i = 0; i < boundaries.size(); i++)

if (boundaries[i].belongs to constellation(constellation))
draw boundary line(boundaries[i], mytransform, objects, true);

OUT � "}%\n";
}
else

for (int i = 0; i < boundaries.size(); i++) draw boundary line(boundaries[i], mytransform, objects);
}

§113 PP3 (Version 1.3) CONSTELLATION LINES 69

113. Constellation lines. In the loop I test all lines available in connections. The first thing in the loop
is to assure that at least one of stars is actually visible. At the beginning (x1, y1) and (x2, y2) are the screen
coordinates of the two stars that are supposed to be connected by a line. Then I move from there to the
respective other star by the amount of skip. The current length of the connection line is stored in r which
must have a minimal value (in particular it must be positive), otherwise it doesn’t make sense to draw the
line. Finally the line is drawn from the new (x1, y1) to the new (x2, y2).

I expect has valid coordinates() to be false if the star is on the non-visible hemisphere (i. e. z < 0).

void draw constellation lines(connections list &connections, const stars list &stars, objects list &objects)
{
OUT � "\\psset{linecolor=clinecolor,linestyle=" � params.linestyle cline � ",linewidth=" �

params.linewidth cline � "cm}%\n";
for (int i = 0; i < connections.size(); i++)

if ((stars[connections[i].from].in view ≡ visible ∨ stars[connections[i].to].in view ≡ visible) ∧
stars[connections[i].from].has valid coordinates()∧ stars[connections[i].to].has valid coordinates())

{
double x1 = stars[connections[i].from].x;
double y1 = stars[connections[i].from].y;
double x2 = stars[connections[i].to].x;
double y2 = stars[connections[i].to].y;
const double phi = atan2(y2 − y1, x2 − x1);
double r = hypot(x2 − x1, y2 − y1);
double skip;

skip = stars[connections[i].from].radius + stars[connections[i].from].skip;
r −= skip;
x1 += skip ∗ cos(phi);
y1 += skip ∗ sin(phi);
skip = stars[connections[i].to].radius + stars[connections[i].to].skip;
r −= skip;
x2 −= skip ∗ cos(phi);
y2 −= skip ∗ sin(phi);
connections[i].radius = r/2.0;
connections[i].x = (x1 + x2)/2.0;
connections[i].y = (y1 + y2)/2.0;
if (r > params.shortest constellation line ∧ r > 0.0) {
OUT � "\\psline{cc−cc}(" � x1 � ’,’ � y1 � ")(" � x2 � ’,’ � y2 � ")%\n";
connections[i].start = point(x1, y1);
connections[i].end = point(x2, y2);
objects.push back(&connections[i]);

}
}

}

70 DRAWING THE MILKY WAY PP3 (Version 1.3) §114

114. Drawing the Milky Way. If a proper data file is available, the milky way is a simple concept,
however difficult to digest for LATEX due to many many Postscipt objects. But for this program it’s so simple
that I can do the reading and drawing in one small routine and I even don’t need any large data structures.

See 〈Reading the milkyway into pixels 68 〉 for more information on pixels.

void draw milky way(const transformation &mytransform)
{

vector〈vector〈point〉〉 pixels(256);

〈Reading the milkyway into pixels 68 〉
for (int i = 1; i < pixels.size(); i++) {

if (pixels[i].size() ≡ 0) continue;
interpolate colors(double(i)/255.0, params.bgcolor, params.milkywaycolor).set(OUT);
for (int j = 0; j < pixels[i].size(); j++)
OUT � "\\qdisk(" � pixels[i][j].x � "," � pixels[i][j].y � "){" � radius � "pt}%\n";

}
}

§115 PP3 (Version 1.3) THE MAIN FUNCTION 71

115. The main function. This consists of six parts:

(1) Command line interpretation.
(2) Definition of the desired transformation, here called mytransform.
(3) Definition of the containers and
(4) the filling of them by reading from text files.
(5) Creating of the LATEX file, first and foremost by calling the drawing routines.
(6) Possibly create an EPS or PDF file by calling the necessary programs.

That’s it.

〈Routines for reading the input script 11 〉
int main(int argc, char ∗∗argv)
{

try {
〈Dealing with command line arguments 116 〉
read parameters from script(∗params.in);
if (¬params.filename output.empty()) params.out = new ofstream(params.filename output.c str());

transformation mytransform(params.center rectascension, params.center declination,
params.view frame width, params.view frame height, params.grad per cm);

〈Definition and filling of the containers 117 〉
read objects and labels(∗params.in, dimensions, objects, stars, nebulae, texts, flexes, mytransform);
OUT.setf (ios ::fixed); /∗ otherwise LATEX gets confused ∗/
OUT.precision(3);
〈Create LATEX header 119 〉
OUT � "\\psclip{\\psframe[linestyle=none](0bp,0bp)(" �

params.view frame width in bp() � "bp," � params.view frame height in bp() �
"bp)}%\n" � "\\psframe*[linecolor=bgcolor,linestyle=none](−1bp,−1bp)(" �
params.view frame width in bp()+1 � "bp," � params.view frame height in bp()+1 � "bp)%\n";

〈Draw all celestial objects and labels 118 〉
OUT � "\\endpsclip\n";
〈Create LATEX footer 121 〉
if (params.input file) delete params.in;
〈Create EPS or PDF file if requested 122 〉

}
catch(string s)
{

cerr � "pp3: " � s � ’.’ � endl;
exit(1);

}
return 0;

}

72 THE MAIN FUNCTION PP3 (Version 1.3) §116

116. PP3 needs exactly one argument. It must be either the file name of the input script or a ‘−’ which
means that it takes standard input for reading the input script.

〈Dealing with command line arguments 116 〉 ≡
if (argc ≡ 2) {

if (argv[1][0] 6= ’−’) {
params.in = new ifstream(argv[1]);
if (¬params.in~good()) throw string("Input script file ") + argv[1] + " not found";
else params.input file = true;

}
else if (¬strcmp(argv[1], "−")) params.in = &cin;
else cerr � "Invalid argument: " � argv[1] � endl;

}
if (params.in ≡ 0) {

cerr � "PP3 1.3 Copyright (c) 2003 Torsten Bronger\n"
� " http://pp3.sourceforge.net\n\n"
� "Syntax:\n pp3 {input−file}\n\n"
� "{input−file} may be \"−\" to denote standard input.\n"
� "You may give an empty file to get a default plot.\n"
� "The plot is sent to standard output by default.\n";

exit(0);
}

This code is used in section 115.

117. I must define all containers, but of course I only read those data structures that are actually used.

〈Definition and filling of the containers 117 〉 ≡
boundaries list boundaries;
dimensions list dimensions;
objects list objects;
stars list stars;
nebulae list nebulae;
connections list connections;
texts list texts;
flexes list flexes;

read stars(stars); /∗ Must come first, because it tests whether data files can be found ∗/
if (params.show boundaries) read constellation boundaries(boundaries);
read label dimensions(dimensions);
if (params.nebulae visible) read nebulae(nebulae);
if (params.show lines) read constellation lines(connections, stars);

This code is used in section 115.

§118 PP3 (Version 1.3) THE MAIN FUNCTION 73

118. Four calls here are not preceded by an if clause: create grid() contains such tests of its own (because
it’s divided into subsections), and in draw flex labels(), draw text labels(), and draw stars() every single
object is tested for visibility anyway.

〈Draw all celestial objects and labels 118 〉 ≡
if (params.milkyway visible) draw milky way(mytransform);
create grid(mytransform);
if (params.show boundaries) draw boundaries(mytransform, boundaries, objects, params.constellation);
draw flex labels(mytransform, flexes, objects, dimensions);
draw text labels(mytransform, texts, objects);
if (params.nebulae visible) draw nebulae(mytransform, nebulae, objects);
draw stars(mytransform, stars, objects);
if (params.show lines) draw constellation lines(connections, stars, objects);
if (params.show labels) {

arrange labels(objects, dimensions);
print labels(objects);

}
This code is used in section 115.

119. This is the preamble and the beginning of the resulting LATEX file. I use the geometry package and
a dvips \special command to set the papersize to the actual view frame plus 2 millimetres. So I create a
buffer border of 1 mm thickness.

〈Create LATEX header 119 〉 ≡
create preamble(OUT);
OUT � "\\usepackage[nohead,nofoot,margin=0cm,"

� "paperwidth=" � params.view frame width in bp() � "bp,"

� "paperheight=" � params.view frame height in bp() � "bp"

� "]{geometry}\n\n"

� "\n\\begin{document}\\parindent0pt\n"

� "\\pagestyle{empty}\\thispagestyle{empty}%\n"

� "\\special{papersize=" � params.view frame width in bp() − 0.1 � "bp," �
params.view frame height in bp() − 0.1 � "bp}%\n"

� "\\vbox to " � params.view frame height in bp() � "bp{"

� "\\vfill"

� "\\hbox to " � params.view frame width in bp() � "bp{%\n"

� params.bgcolor � params.gridcolor � params.eclipticcolor � params.boundarycolor �
params.hlboundarycolor � params.starcolor � params.nebulacolor � params.clinecolor;

This code is cited in section 121.

This code is used in section 115.

74 THE MAIN FUNCTION PP3 (Version 1.3) §120

120. If no preamble filename was given in the input script, a default preamble is used. If a preamble
filename was given, the file should contain only font specifying commands. A possible preamble may be:

\usepackage{eulervm}

\usepackage[T1]{fontenc}

\renewcommand*{\rmdefault}{pmy}

You may also have use for a command like \AtBeginDocument{\sffamily} or \boldmath or \large or
whatever. Or let be inspired by this fragment:

\usepackage{relsize}

\renewcommand*{\NGC}[1]{\smaller #1}

\renewcommand*{\IC}[1]{\smaller{\smaller IC\,}#1}

\renewcommand*{\Messier}[1]{\smaller{\smaller M\,}#1}

The default preamble activates Adobe Symbol Greek letters, and Helvetica Roman letters. If you define
a preamble of your own, you don’t have to re-define that, because it’s not defined then. You can assume a
naked plain LATEX font setup.

I define a couple of LATEX commands as hooks here, all of them take exactly one argument. “\Label”
encloses every label. In addition to that, “\NGC”, “\IC”, and “\Messier” are built around the nebula
label of the respective type, “\Starname” around all star labels, “\TextLabel” around text labels, and
“\FlexLabel” around flex labels. “\TicMark” encloses all coordinate labels generated with the tics option.
By default, they do nothing. Well, nothing to speak of.

〈 create preamble() for writing the LATEX preamble 120 〉 ≡
void create preamble(ostream &out)
{

out � "\\documentclass[" � params.font size � "pt]{article}\n\n"

� "\\nofiles"

� "\\usepackage[dvips]{color}\n"

� "\\usepackage{pstricks,pst−text}\n"

� "\\newcommand*{\\DP}{.}\n"

� "\\newcommand*{\\TicMark}[1]{#1}\n"

� "\\newcommand*{\\Label}[1]{#1}\n"

� "\\newcommand*{\\TextLabel}[1]{#1}\n"

� "\\newcommand*{\\FlexLabel}[1]{#1}\n"

� "\\newcommand*{\\Starname}[1]{#1}\n"

� "\\newcommand*{\\Messier}[1]{M\\,#1}\n"

� "\\newcommand*{\\NGC}[1]{NGC\\,#1}\n"

� "\\newcommand*{\\IC}[1]{IC\\,#1}\n\n";
if (params.filename preamble.empty())

out � "\\usepackage{mathptmx}\n"

� "\\usepackage{helvet}\n"

� "\\AtBeginDocument{\\sffamily}\n";
else out � "\\input " � params.filename preamble � ’\n’;

}
This code is cited in section 19.

This code is used in section 82.

§121 PP3 (Version 1.3) THE MAIN FUNCTION 75

121. This is almost trivial. I just close the box structure I began at the end of 〈Create LATEX header 119 〉
and close the document.

〈Create LATEX footer 121 〉 ≡
OUT � "\\hfill}}\\end{document}\n";

This code is used in section 115.

122. Here I call LATEX, dvips, and/or PS2PDF in order to create the output the user wanted to have
eventually in the input script.

〈Create EPS or PDF file if requested 122 〉 ≡
if (¬params.filename output.empty() ∧ (params.create eps ∨ params.create pdf)) {
OUT.flush();

string commandline = string("latex ") + params.filename output;

if (system(commandline.c str()) ≡ 0) {
string base filename(params.filename output);

if (base filename.find(’.’) 6= string ::npos) base filename.erase(base filename.find(’.’));
commandline = string("dvips −o ") + base filename + ".eps " + base filename;
if (system(commandline.c str()) ≡ 0) {

if (params.create pdf) {
commandline = string("ps2pdf ") + "−dCompatibility=1.3 " + base filename + ".eps " +

base filename + ".pdf";
if (system(commandline.c str()) 6= 0) throw string("ps2pdf call failed: ") + commandline;

}
}
else throw string("dvips call failed: ") + commandline;

}
else throw string("LaTeX call failed: ") + commandline;

}
This code is used in section 115.

76 INDEX PP3 (Version 1.3) §123

123. Index.

a: 75, 92, 93, 94.
a unscaled: 75, 77, 78.
add: 26.
add_labels: 26.
add curve point: 104, 105, 106, 107, 108.
along: 35.
alpha: 77.
angle: 28, 29, 35, 36, 89, 90.
argc: 115, 116.
argv: 115, 116.
arrange labels: 79, 82, 118.
asin: 108.
assure valid catalogue index: 23, 24, 25.
atan2: 108, 113.
b: 92, 93, 94, 110.
b v: 43, 45, 98, 99, 100.
background: 14.
base filename: 122.
begin: 12, 88, 91, 97.
belongs to constellation: 54, 55, 112.
best angle: 82.
best penalty: 82.
bgcolor: 8, 9, 14, 114, 119.
blue: 69, 70, 71, 72, 73.
boolean: 11.
bottom: 39, 41, 42, 43, 44, 48, 49, 58, 60, 61, 62,

63, 85, 94, 96.
bottom1: 80.
bottom2: 42, 44, 49, 80.
boundaries: 14, 15, 16, 17, 18, 19.
boundaries: 57, 112, 117, 118.
boundaries_rim: 18.
boundaries list: 54, 57, 112, 117.
boundary: 54, 55, 56, 57, 58, 110.
boundary atom: 58, 59, 60, 111.
boundarycolor: 8, 9, 14, 119.
boundaryfile: 57.
box_height: 20.
box_width: 20.
bs: 43, 45.
bv0: 99.
bv1: 99.
bv2: 99.
bv3: 99.
c: 12, 71, 72, 89, 90, 92, 93, 94.
c str: 19, 26, 46, 51, 57, 64, 68, 86, 88, 115, 122.
calculate overlap: 80.
catalog: 52.

catalogue: 23, 52.
catalogue index: 24, 25.
catalogue name: 23, 24, 25.
ceil: 8.
center_declination: 20.
center_rectascension: 20.
center declination: 8, 9, 20, 115.
center rectascension: 8, 9, 20, 115.
cerr: 23, 35, 60, 63, 82, 115, 116.
ch: 45.
cin: 116.
clear: 24, 82.
clinecolor: 8, 9, 14, 119.
close: 88.
cm per grad: 68.
color: 13, 14.
color: 8, 39, 69, 70, 71, 72, 73, 89, 90, 92, 93, 94.
color name: 14.
colored_stars: 17.
colored stars: 8, 9, 17, 98.
commandline: 88, 122.
connection: 61, 63, 65.
connections: 64, 65, 113, 117, 118.
connections list: 61, 64, 113, 117.
const iterator: 88, 97.
constellation: 20.
constellation: 8, 9, 20, 22, 23, 43, 45, 48, 50, 54,

55, 66, 67, 82, 112, 118.
constellation_lines: 14, 15, 16, 17, 18, 19.
constellation_lines_rim: 18.
constellations: 54, 55, 56.
contents: 12, 35, 36, 37, 89, 90.
cooked labels file: 88.
coordinates: 37.
core: 39, 42, 43, 44, 48, 49, 58, 60, 61, 63, 94, 96.
cos: 41, 77, 78, 95, 102, 106, 108, 113.
cos angle: 102.
cos delta: 78.
cout: 9.
create eps: 8, 9, 17, 122.
create grid: 105, 118.
create hs colour: 98, 99.
create pdf : 8, 9, 17, 122.
create preamble: 88, 119, 120.
current boundary: 57.
current depth: 88.
current height: 88.
current line: 110, 111.

§123 PP3 (Version 1.3) INDEX 77

current name: 88.
current nebula: 51, 52.
current object: 28, 30, 87.
current star: 46.
current width: 88.
c1: 73.
c2: 73.
d: 81, 89, 90, 92, 93, 94.
dashed: 16.
DBL_EPSILON: 78.
DBL_MAX: 39, 82.
DEBUG: 82, 85.
decimal point: 120.
declination: 35, 36, 37, 43, 45, 48, 50, 68, 75, 77,

78, 89, 90, 91, 92, 93, 95, 98, 101, 102, 104,
106, 108, 110.

declination: 35.
declination flex: 36, 92, 94, 95, 96.
delete: 26.
delete_labels: 26.
delta: 77, 78, 108.
denominator: 62.
depth: 81, 86, 87, 88.
diameter x: 48, 50, 101, 102.
diameter y: 48, 50, 101, 102.
dimension: 38, 81.
dimensions: 26, 82, 86, 87, 88, 92, 94, 95, 97,

115, 117, 118.
dimensions list: 26, 81, 82, 86, 88, 92, 94, 95,

97, 117.
dimensions recalculated: 87.
distance: 83, 84.
dotted: 16.
\DP: 120.
draw: 92, 94, 95, 97.
draw : 91.
draw boundaries: 112, 118.
draw boundary line: 110, 112.
draw constellation boundaries: 110.
draw constellation lines: 61, 113, 118.
draw flex labels: 97, 118.
draw milky way: 114, 118.
draw nebula: 102.
draw nebulae: 101, 118.
draw stars: 98, 118.
draw text labels: 91, 118.
dummy: 64, 86.
ecliptic: 14, 15, 16, 17.
eclipticcolor: 8, 9, 14, 119.

emission: 47, 101.
empty: 7, 19, 26, 60, 63, 72, 82, 84, 88, 98, 112,

115, 120, 122.
end: 23, 58, 59, 60, 61, 62, 63, 87, 88, 91, 95, 97, 113.
endl: 60, 63, 82, 115, 116.
eps_output: 17.
epsilon: 108.
erase: 122.
error message: 24, 65.
exit: 115, 116.
faintest_cluster_magnitude: 20.
faintest_diffuse_nebula_magnitude: 20.
faintest_star_disk_magnitude: 20.
faintest_star_magnitude: 20.
faintest_star_with_label_magnitude: 20.
faintest cluster magnitude: 8, 9, 20, 101.
faintest diffuse nebula magnitude: 8, 9, 20, 101.
faintest star disk magnitude: 8, 9, 20, 98.
faintest star magnitude: 8, 9, 20, 98.
faintest star with label magnitude: 8, 9, 20, 98.
false: 9, 11, 23, 26, 28, 31, 35, 39, 44, 49, 55, 62, 78,

82, 87, 95, 104, 105, 106, 107, 108, 110, 113.
fdim: 42, 44, 49, 80.
file: 64, 68, 86.
filename: 13.
filename: 46, 51.
filename boundaries: 8, 9, 19, 57.
filename dimensions: 8, 9, 19, 86.
filename include: 8, 9, 19, 26.
filename lines: 8, 9, 19, 64.
filename milkyway: 8, 9, 19, 68.
filename nebulae: 8, 9, 19, 51.
filename output: 8, 9, 19, 88, 115, 122.
filename preamble: 8, 9, 19, 120.
filename prefix: 7, 9.
filename stars: 8, 9, 19, 46.
find: 23, 37, 87, 95, 122.
fixed: 37, 88, 115.
flamsteed: 22, 23, 24, 25, 28, 30, 31, 32, 33, 34,

43, 45, 66, 67.
flex label: 92, 93, 94.
flexes: 26, 36, 97, 115, 117, 118.
flexes list: 26, 92, 93, 97, 117.
\FlexLabel: 120.
floor: 35, 37.
flush: 122.
fmax: 39, 42, 44, 49, 80.
fmin: 42, 44, 49, 80.
font size: 8, 9, 20, 120.

78 INDEX PP3 (Version 1.3) §123

fontsize: 20.
found: 23.
found nebulae: 24, 26, 31, 32, 33, 34.
found stars: 24, 26, 31, 32, 33, 34.
from: 61, 113.
from catalogue index: 64, 65, 66.
from catalogue name: 64, 65, 66.
from index: 65, 66, 67.
galaxy: 47, 101.
get: 12, 45.
get label boundaries: 39, 41, 42, 82, 85.
get rad per cm: 68, 75, 95, 101, 105.
getenv: 7.
getline: 13, 26, 27, 45, 64, 86.
globular cluster: 47, 101.
good: 116.
grad_per_cm: 20.
grad per cm: 8, 9, 20, 75, 76, 77, 115.
green: 69, 70, 71, 72, 73.
grid: 14, 15, 16, 17.
gridcolor: 8, 9, 14, 119.
half x: 102.
half y: 102.
has valid coordinates: 39, 113.
hd: 22, 43, 45, 66, 67.
height: 75, 77, 78, 81, 86, 87, 88, 95.
henry draper: 22, 23, 24, 25, 28, 30, 31, 32, 33, 34.
hidden: 31, 34, 39, 59, 61, 82, 93, 98, 101.
highlighted: 110.
highlighted_boundaries: 14, 15, 16.
hlboundarycolor: 8, 9, 14, 119.
hooks in preamble: 120.
horizontal angle: 48, 50, 101, 102.
hue: 99.
hue0: 99.
hue1: 99.
hue2: 99.
hue3: 99.
hypot: 59, 60, 63, 83, 113.
i: 22, 31, 32, 33, 34, 55, 56, 65, 77, 82, 85, 87, 88, 95,

98, 101, 104, 106, 107, 108, 112, 113, 114.
ic: 22, 24, 25, 28, 30, 31, 32, 33, 34, 48, 50, 52.
\IC: 120.
identify object: 25, 28, 30.
ifstream: 19, 26, 46, 51, 57, 64, 68, 86, 88, 116.
in: 8, 9, 45, 50, 56, 71, 115, 116.
in view: 33, 34, 39, 59, 61, 82, 83, 85, 91, 93,

98, 101, 113.
include: 19.

included: 26.
included file: 26, 27.
included script: 19.
index: 23.
index list: 21, 22, 23, 24, 25.
input file: 8, 9, 115, 116.
insert: 12.
interpolate colors: 73, 114.
intersection: 60, 62, 63.
intersection points: 60, 63.
ios: 37, 88, 115.
isspace: 12.
istream: 8, 11, 12, 13, 24, 25, 26, 45, 50, 56, 71.
iterator: 91.
j: 77, 82, 83, 102, 110, 114.
justification: 95.
k: 82.
kind: 48, 50, 101.
kind flex declination: 35, 36.
kind text label: 35, 36.
label: 30, 39, 46, 52, 82, 84, 85, 87, 88, 90, 93, 95.
label_dimensions: 19.
label_skip: 20.
\Label: 120.
label angle: 28, 39, 41, 79, 82, 90, 93, 95.
label arranged: 28, 31, 39, 42, 44, 49, 82, 85, 90, 93.
label color: 39, 85, 90, 93, 95.
label depth: 39, 41, 85, 87.
label height: 39, 41, 82, 87, 95.
label kind: 35, 36.
label skip: 8, 9, 20, 39.
label width: 39, 41, 82, 87, 95.
labelcolor: 8, 9, 14, 39.
labels: 14, 17, 18.
lable angle: 39.
lambda: 62.
last x: 104.
last y: 104.
latex_preamble: 19.
left: 39, 41, 42, 43, 44, 48, 49, 58, 60, 61, 62,

63, 85, 94, 96.
left1: 80.
left2: 42, 44, 49, 80.
length: 29, 60, 63, 88.
line_style: 13, 16.
line_width: 13, 15.
line intersection: 60, 62, 63.
line name: 15, 16.
lines: 61.

§123 PP3 (Version 1.3) INDEX 79

linestyle boundary: 8, 9, 16, 112.
linestyle cline: 8, 9, 16, 113.
linestyle ecliptic: 8, 9, 16, 108.
linestyle grid: 8, 9, 16, 105.
linestyle hlboundary: 8, 9, 16, 112.
linestyle nebula: 8, 9, 16, 101.
linewidth boundary: 8, 9, 15, 112.
linewidth cline: 8, 9, 15, 113.
linewidth ecliptic: 8, 9, 15, 108.
linewidth grid: 8, 9, 15, 105, 106.
linewidth hlboundary: 8, 9, 15.
linewidth nebula: 8, 9, 15, 101.
list: 88, 89, 93.
lower: 95.
m dot: 98.
M_PI: 68, 77, 78, 95, 101, 102, 105, 106, 108.
M_PI_2: 59, 77.
M_PI_4: 41.
m sin phi0: 108.
magnitude: 43, 45, 48, 50, 98, 101.
main: 105, 115.
map: 21, 22, 23, 24, 25, 81.
max: 62.
max ic: 22.
max messier: 22.
max ngc: 22.
max saturation: 99.
messier: 22, 24, 25, 28, 30, 31, 32, 33, 34, 48,

50, 52, 101.
\Messier: 120.
milky_way: 14, 17, 19.
milkyway visible: 8, 9, 17, 118.
milkywaycolor: 8, 9, 14, 114.
min: 62.
min saturation: 99.
minimal_nebula_radius: 20.
minimal_star_radius: 20.
minimal nebula radius: 8, 9, 20, 101.
minimal star radius: 8, 9, 20, 98.
mytransform: 26, 68, 91, 92, 94, 95, 97, 98, 101,

102, 112, 114, 115, 118.
n: 50.
name: 43, 45, 46, 69, 72, 86, 98.
nebula: 48, 49, 50, 51, 74.
nebula kind: 47, 48, 50.
nebulacolor: 8, 9, 14, 119.
nebulae: 22, 25, 26, 28, 30, 31, 32, 33, 34, 51, 101,

102, 115, 117, 118.
nebulae: 14, 15, 16, 17, 18, 19.

nebulae file: 51.
nebulae list: 25, 26, 48, 51, 101, 117.
nebulae visible: 8, 9, 17, 24, 117, 118.
new name: 73.
ngc: 22, 24, 25, 28, 30, 31, 32, 33, 34, 48, 50, 52.
\NGC: 120.
npos: 37, 122.
number: 52.
number of points: 106, 107, 108.
numerator: 62.
object name: 19.
objects: 26, 74, 82, 83, 84, 85, 87, 88, 91, 92, 94, 95,

97, 98, 101, 110, 111, 112, 113, 115, 117, 118.
objects list: 26, 40, 82, 85, 88, 91, 92, 94, 95, 97,

98, 101, 110, 112, 113, 117.
off: 17.
ofstream: 88, 115.
on: 17.
on baseline: 28, 29, 35, 36, 39, 41, 89, 90, 93.
on object bottom: 82.
on object left: 82.
on object right: 82.
on object scope: 83.
on object top: 82.
opcode: 13, 14, 15, 16, 17, 18, 19, 20, 26, 28, 30,

31, 32, 33, 34, 35.
open cluster: 47, 101.
origin x: 41.
origin y: 41.
ostream: 8, 69, 70, 72, 120.
out: 6, 8, 9, 69, 70, 72, 115, 120.
OUT: 6, 85, 95, 98, 99, 101, 102, 104, 105, 106, 108,

110, 112, 113, 114, 115, 119, 121, 122.
output: 19.
overlap bottom: 42, 44, 49, 80.
overlap left: 42, 44, 49, 80.
overlap right: 42, 44, 49, 80.
overlap top: 42, 44, 49, 80.
overlap x: 42, 44, 49, 80.
overlap y: 42, 44, 49, 80.
p: 56.
param name: 20.
parameters: 8.
params: 6, 8, 14, 15, 16, 17, 18, 19, 20, 24, 26, 35,

36, 39, 42, 44, 46, 49, 51, 57, 60, 63, 64, 68, 82,
85, 86, 88, 98, 101, 105, 106, 108, 112, 113, 114,
115, 116, 117, 118, 119, 120, 122.

path point rectascension: 95.
pdf_output: 17.

80 INDEX PP3 (Version 1.3) §123

penalties: 44, 49.
penalties: 13, 18.
penalties boundary: 8, 9, 18, 60.
penalties boundary rim: 8, 9, 18, 60.
penalties cline: 8, 9, 18, 63.
penalties cline rim: 8, 9, 18, 63.
penalties label: 8, 9, 18, 42.
penalties nebula: 8, 9, 18, 49.
penalties rim: 8, 9, 18, 82.
penalties star: 8, 9, 18, 44.
penalties threshold: 8, 9, 18, 82.
penalties with: 39, 40, 42, 43, 44, 48, 49, 58, 60,

61, 63, 82, 94, 96.
penalty: 79, 82.
penalty name: 18.
phi: 77, 78, 108, 113.
phi0: 108.
pixel: 68.
pixels: 68, 114.
point: 53, 54, 58, 59, 60, 61, 63, 68, 110, 113, 114.
point distance: 105.
points: 54, 56, 110.
polar projection: 68, 75, 77, 78, 91, 95, 98, 101,

102, 104, 110.
position: 28, 29, 35.
PP3DATA: 7.
pp3data: 7.
pp3data env: 7.
pp3data env raw: 7.
preamble (LATEX): 120.
precision: 82, 88, 115.
print labels: 79, 85, 91, 93, 118.
push back: 24, 36, 46, 51, 57, 60, 63, 65, 68, 74, 83,

88, 91, 97, 98, 101, 110, 111, 113.
r: 60, 63, 89, 90, 92, 93, 94, 113.
r min: 98.
r scale: 102.
rad per cm: 75, 77.
radius: 39, 41, 44, 49, 59, 68, 90, 98, 101, 102,

113, 114.
raw labels file: 88.
read : 1.
read boolean: 11, 17.
read constellation boundaries: 57, 117.
read constellation lines: 64, 117.
read label dimensions: 86, 117.
read nebulae: 51, 117.
read objects and labels: 26, 115.
read parameters from script: 13, 19, 115.

read stars: 46, 117.
read string: 12, 19, 20, 30, 35.
recalculate dimensions: 87, 88, 95.
rectascension: 35, 36, 37, 43, 45, 48, 50, 68, 75,

77, 78, 89, 90, 91, 92, 93, 95, 98, 101, 102,
104, 107, 108, 110.

rectascension halfwidth: 95.
red: 69, 70, 71, 72, 73.
reflection: 47, 101.
replace: 37.
reposition: 26.
required names: 88.
resize: 56.
rest of line: 13, 26.
right: 39, 41, 42, 43, 44, 48, 49, 58, 60, 61, 62,

63, 85, 94, 96.
right1: 80.
right2: 42, 44, 49, 80.
rim: 18.
rim width: 82.
s: 45, 82, 92, 93, 94, 115.
saturation: 99.
scans per cm: 105.
scans per fullcircle: 105, 106, 107, 108.
scope: 39, 83.
script: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25,

26, 28, 30, 31, 32, 33, 34, 35.
search objects: 24, 31, 32, 33, 34.
semicolon: 28.
set: 13, 20.
set: 69, 70, 85, 95, 114.
set_label_text: 26.
setf : 37, 88, 115.
shortest_constellation_line: 20.
shortest constellation line: 8, 9, 20, 113.
show boundaries: 8, 9, 17, 117, 118.
show ecliptic: 8, 9, 17, 105.
show grid: 8, 9, 17, 105.
show labels: 8, 9, 17, 118.
show lines: 8, 9, 17, 117, 118.
sin: 41, 77, 78, 102, 108, 113.
sin angle: 102.
size: 22, 31, 32, 33, 34, 55, 56, 60, 63, 65, 82, 83, 85,

87, 88, 98, 101, 110, 112, 113, 114.
skip: 18, 39, 41, 59, 61, 82, 84, 90, 113.
slope: 62.
solid: 16.
spectral class: 43, 45, 98, 99, 100.
sqrt: 98, 101.

§123 PP3 (Version 1.3) INDEX 81

star: 43, 44, 45, 46, 74, 82.
star_scaling: 20.
star scaling: 8, 9, 20, 98.
starcolor: 8, 9, 14, 98, 119.
\Starname: 120.
stars: 22, 25, 26, 28, 30, 31, 32, 33, 34, 46, 61, 64,

65, 66, 67, 74, 98, 113, 115, 117, 118.
stars: 14, 18, 19.
stars file: 46.
stars list: 25, 26, 44, 46, 64, 98, 113, 117.
start: 35, 58, 59, 60, 61, 62, 63, 113.
start y: 62.
std: 5.
step declination: 35.
step rectascension: 35.
steps: 104, 105, 106, 107, 108.
str: 24, 37, 52, 65, 82.
strcmp: 116.
stretch: 76, 78.
stretch factor: 75, 76, 78.
string: 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22,

23, 24, 25, 26, 27, 28, 29, 35, 37, 39, 43, 46, 48,
52, 54, 55, 64, 69, 71, 72, 73, 81, 86, 87, 88, 89,
90, 92, 93, 94, 95, 99, 112, 115, 116, 122.

stringstream: 24, 37, 52, 65, 82.
strtod: 88.
substr: 55, 88.
switch: 13, 17.
switch name: 17.
system: 88, 122.
t: 89, 90.
temp file: 88.
text: 26, 35.
text: 36, 89, 90, 91.
text_labels: 14.
\TextLabel: 120.
textlabelcolor: 8, 9, 14, 35, 36.
texts: 26, 36, 91, 115, 117, 118.
texts list: 26, 89, 91, 117.
threshold: 18.
\TicMark: 120.
tics: 35.
to: 61, 113.
to catalogue index: 64, 65, 67.
to catalogue name: 64, 65, 67.
to index: 65, 66, 67.
token: 27, 35.
top: 39, 41, 42, 43, 44, 48, 49, 58, 60, 61, 62,

63, 85, 94, 96.

top1: 80.
top2: 42, 44, 49, 80.
transform: 104, 105, 106, 107, 108, 110.
transformation: 26, 75, 76, 77, 78, 91, 92, 94, 95,

97, 98, 101, 104, 105, 110, 112, 114, 115.
true: 9, 11, 23, 26, 28, 31, 39, 43, 48, 55, 58, 61, 78,

82, 87, 90, 93, 94, 95, 104, 112, 116.
undecided: 39, 98, 101.
UnexpectedEOS: 12.
unique: 88.
unknown: 47, 48.
user pattern: 35, 37.
value: 18.
vector: 24, 26, 38, 40, 44, 48, 54, 60, 61, 63, 68,

83, 110, 114.
vectors: 21.
vicinity: 82, 83.
view data: 25, 28, 30, 39, 40, 41, 42, 43, 44, 48,

49, 58, 61, 74, 87, 89, 90, 92.
view frame height: 8, 9, 20, 82, 85, 115.
view frame height in bp: 8, 115, 119.
view frame width: 8, 9, 20, 82, 85, 115.
view frame width in bp: 8, 115, 119.
visibility: 39.
visible: 28, 32, 33, 39, 42, 59, 61, 82, 83, 84, 85, 87,

90, 91, 93, 98, 101, 113.
width: 75, 77, 78, 81, 86, 87, 88, 95.
with label: 28, 31, 32, 39, 42, 59, 61, 82, 84, 85,

87, 90, 93, 98, 101.
within curve: 104, 105, 106, 107, 108.
x: 39, 53, 68, 73, 75, 78, 91, 95, 102, 104, 110.
x0: 78.
x1: 78, 113.
x2: 113.
y: 39, 53, 68, 73, 75, 78, 91, 95, 102, 104, 110.
y0: 78.
y1: 78, 113.
y2: 113.
z: 75, 76.
zero point: 62.
z̃: 76.
z0: 78.
z1: 78.

82 NAMES OF THE SECTIONS PP3 (Version 1.3)

〈Celestial object activation 33 〉 Cited in section 34. Used in section 26.

〈Celestial object deletion 34 〉 Used in section 26.

〈Change label text 30 〉 Used in section 26.

〈Condition to exclude double stars and such 84 〉 Used in section 83.

〈Create EPS or PDF file if requested 122 〉 Used in section 115.

〈Create LATEX footer 121 〉 Used in section 115.

〈Create LATEX header 119 〉 Cited in section 121. Used in section 115.

〈Create a boundary atom for the objects 111 〉 Cited in section 60. Used in section 110.

〈Create grid lines for equal declination 106 〉 Used in section 105.

〈Create grid lines for equal rectascension 107 〉 Used in section 105.

〈Create mapping structures for direct catalogue access 22 〉 Used in section 26.

〈Create nebula label 52 〉 Used in section 51.

〈Create one connection 65 〉 Used in section 64.

〈Dealing with command line arguments 116 〉 Used in section 115.

〈Default values of all global parameters 9 〉 Used in section 8.

〈Define color data structure 69 〉 Used in section 8.

〈Definition and filling of the containers 117 〉 Used in section 115.

〈Definition of line intersection() for intersection of two lines 62 〉 Cited in section 60. Used in section 60.

〈Draw all celestial objects and labels 118 〉 Used in section 115.

〈Draw nebula shape 102 〉 Cited in section 101. Used in section 101.

〈Draw the ecliptic 108 〉 Used in section 105.

〈 Find objects in vicinity of objects[i] 83 〉 Cited in section 39. Used in section 82.

〈Generate contents from current coordinates 37 〉 Cited in section 35. Used in section 35.

〈Handle missing B−V value 100 〉 Used in section 99.

〈Helping routines for nebulae labels 88 〉 Used in section 82.

〈 Insert text label into label container structure 36 〉 Used in section 35.

〈Label activation 32 〉 Used in section 26.

〈Label deletion 31 〉 Used in section 26.

〈Label repositioning 28 〉 Used in section 26.

〈Map a wind rose position to an angle and determine on baseline 29 〉 Used in sections 28 and 35.

〈Reading the milkyway into pixels 68 〉 Cited in section 114. Used in section 114.

〈Routines for reading the input script 11, 12, 13, 21, 23, 24, 25, 26 〉 Used in section 115.

〈 Set color parameters 14 〉 Used in section 13.

〈 Set filename parameters 19 〉 Used in section 13.

〈 Set label dimensions 87 〉 Used in section 82.

〈 Set line styles 16 〉 Used in section 13.

〈 Set line widths 15 〉 Used in section 13.

〈 Set on/off parameters 17 〉 Used in section 13.

〈 Set penalty parameters 18 〉 Used in section 13.

〈 Set single value parameters 20 〉 Used in section 13.

〈 Skip everything till "objects_and_labels" 27 〉 Used in section 26.

〈Test whether stars[i] is the ‘from’ star 66 〉 Cited in section 67. Used in section 65.

〈Test whether stars[i] is the ‘to’ star 67 〉 Used in section 65.

〈Text labels 35 〉 Used in section 26.

〈 create hs colour() for star colour determination 99 〉 Used in section 98.

〈 create preamble() for writing the LATEX preamble 120 〉 Cited in section 19. Used in section 82.

The Sky Map Creator PP3
(Version 1.3)

Section Page

Introduction . 1 1
Global parameters and default values . 6 2

The input script . 10 6
Part I: Global parameters . 11 6
Part II: Change printed objects and labels . 21 14

Data structures and file formats . 38 25
View data: Positioning and labels . 39 26
Stars . 43 28
Nebulae . 47 30
Constellation boundaries . 53 32
Constellation lines . 61 36
The Milky Way . 68 41
Colour . 69 42

Drawing the chart . 74 44
Coordinate transformations . 75 44
Label organisation . 79 47

Determining label dimensions . 87 52
User labels . 89 54
Flex labels . 92 55

Drawing stars . 98 59
Drawing nebulae . 101 62
Grid and other curves . 103 63

Constellation boundaries . 109 66
Constellation lines . 113 69

Drawing the Milky Way . 114 70

The main function . 115 71

Index . 123 76

Copyright c© 2003 Torsten Bronger (bronger@users.sourceforge.net)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

If you copy or distribute a modified version of this Software, the entire resulting derived work must
be given a different name and distributed under the terms of a permission notice identical to this one.

The Software is provided “as is”, without warranty of any kind, express or implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the Software or the use or other dealings in the Software.

	Introduction
	Global parameters and default values

	The input script
	Partpenalty @M I: Global parameters
	Partpenalty @M II: Change printed objects and labels

	Data structures and file formats
	View data: Positioning and labels
	Stars
	Nebulae
	Constellation boundaries
	Constellation lines
	The Milky Way
	Colour

	Drawing the chart
	Coordinate transformations
	Label organisation
	Determining label dimensions
	User labels
	Flex labels

	Drawing stars
	Drawing nebulae
	Grid and other curves
	Constellation boundaries
	Constellation lines

	Drawing the Milky Way

	The main function
	Index
	Names of the sections
	Celestial object activation
	Celestial object deletion
	Change label text
	Condition to exclude double stars and such
	Create EPS / or PDF / file if requested
	Create LaTeX footer
	Create LaTeX header
	Create a PB {&{boundary_atom}} for the PB {\{objects}}
	Create grid lines for equal declination
	Create grid lines for equal rectascension
	Create mapping structures for direct catalogue access
	Create nebula label
	Create one connection
	Dealing with command line arguments
	Default values of all global parameters
	Define PB {&{color}} data structure
	Definition and filling of the containers
	Definition of PB {\{line_intersection}(,)} for intersection of two lines
	Draw all celestial objects and labels
	Draw nebula shape
	Draw the ecliptic
	Find objects in vicinity of PB {\{objects}[|i]}
	Generate PB {\{contents}} from current coordinates
	Handle missing B$-$V value
	Helping routines for nebulae labels
	Insert text label into label container structure
	Label activation
	Label deletion
	Label repositioning
	Map a wind rose PB {\{position}} to an PB {\{angle}} and determine PB {\{on_baseline}}
	Reading the milkyway into PB {\{pixels}}
	Routines for reading the input script
	Set color parameters
	Set filename parameters
	Set label dimensions
	Set line styles
	Set line widths
	Set on/off parameters
	Set penalty parameters
	Set single value parameters
	Skip everything till PB {.{"objects_and_labels"}}
	Test whether PB {\{stars}[|i]} is the `from' star
	Test whether PB {\{stars}[|i]} is the `to' star
	Text labels
	PB {\{create_hs_colour}(,)} for star colour determination
	PB {\{create_preamble}(,)} for writing the LaTeX preamble

